Alternatives to quasi-static and dynamic constitutive relationships have been investigated with respect to a previously developed energy-based fatigue lifing method for various load profiles, which states: the total strain energy dissipated during both a quasi-static process and a dynamic process are equivalent and a fundamental material property. Specifically, constitutive relationships developed by Ramberg–Osgood and Halford were modified for application to the existing energy-based framework and were compared to the lifing method originally developed by Stowell. Extensive experimentation performed on Titanium 6Al-4V (Ti-64) combined with experimental data generated for Aluminum (Al) 6061-T6 at various temperatures were utilized in support of this investigation. This effort resulted in considerable improvements to the accuracy of the lifing prediction for materials with an endurance limit through application of a modified-Halford approach. Additionally, the relative equality in predictive accuracy between the modified-Stowell approach the modified-Ramberg–Osgood approach was demonstrated.

References

1.
Vasudevan
,
A. K.
,
Sadananda
,
K.
, and
Glinka
,
G.
,
2001
, “
Critical Parameters for Fatigue Damage
,”
Int. J. Fatigue
,
23
(
Suppl. 1
), pp.
39
53
.10.1016/S0142-1123(01)00171-2
2.
Nicholas
,
T.
,
2006
,
High Cycle Fatigue: A Mechanics of Materials Perspective
,
Kidlington, Elsevier
,
Oxford, UK
.
3.
Wohler
,
A.
,
1867
, “
Wohler's Experiments on the Strength of Metals
,”
Engineering
,
4
, pp.
160
161
.
4.
Goodman
,
J.
,
1899
,
Mechanics Applied to Engineering
,
Longmans, Green, and Co.
,
London
.
5.
Jasper
,
T.
,
1923
, “
The Value of the Energy Relation in Testing of Ferrous Metals at Varying Ranges of Stress and at Intermediate High Temperatures
,”
Philos. Mag. J. Sci.
,
46
(274), pp.
609
627
.10.1080/14786442308634287
6.
Hanstock
,
R.
,
1947
, “
Damping Capacity, Strain Hardening and Fatigue
,”
Proc. Phys. Soc.
,
59
(
2
), pp.
275
287
.10.1088/0959-5309/59/2/311
7.
Feltner
,
C.
, and
Morrow
,
J.
,
1961
, “
Microplastic Strain Hysteresis Energy as a Criterion for Fatigue Fracture
,”
ASME J. Basic Eng.
, pp.
15
22
.10.1115/1.3658884
8.
Amiri
,
M.
,
Naderi
,
M.
, and
Khonsari
,
M. M.
,
2009
, “
An Experimental Approach to Evaluate the Critical Damage
,”
Int. J. Damage Mech.
,
20
(
1
), pp.
89
112
.10.1177/1056789509343082
9.
Forrest
,
P. G.
, and
Tapsell
,
H. J.
,
1954
, “
Some Experiments on the Alternating Stress Fatigue of a Mild Steel and an Aluminum Alloy at Elevated Temperatures
,”
Proc. Inst. Mech. Eng.
,
168
, pp.
763
773
.10.1243/PIME_PROC_1954_168_070_02
10.
Enomoto
,
N.
,
1955
, “
On Fatigue Tests Under Progressive Stress
,”
ASTM
,
55
, pp.
903
917
.
11.
Stowell
,
E.
,
1966
, “
Energy Criterion for Fatigue
,”
Nucl. Eng. Des.
,
3
(
1
), pp.
32
40
.10.1016/0029-5493(66)90146-4
12.
Scott-Emuakpor
,
O.
,
Shen
,
M.-H. H.
,
Cross
,
C.
,
Calcaterra
,
J.
, and
George
,
T.
,
2007
, “
Development of an Improved High Cycle Fatigue Criterion
,”
ASME J. Eng. Gas Turbines Power
,
129
(
1
), pp.
162
169
.10.1115/1.2360599
13.
Scott-Emuakpor
,
O.
,
Shen
,
M.-H. H.
,
George
,
T.
,
Cross
,
C.
, and
Calcaterra
,
J.
,
2008
, “
An Energy-Based Uniaxial Fatigue Life Prediction Method for Commonly Used Gas Turbine Engine Materials
,”
ASME J. Eng. Gas Turbines Power
,
130
(
6
), p.
062504
.10.1115/1.2943152
14.
Scott-Emuakpor
,
O.
,
Shen
,
M.-H. H.
,
George
,
T.
, and
Cross
,
C.
,
2009
, “
Multi-Axial Fatigue-Life Prediction Via a Strain-Energy Method
,”
AIAA
,
48
(
1
), pp.
63
72
.10.2514/1.39296
15.
Ozaltun
,
H.
,
Shen
,
M.-H. H.
,
George
,
T.
, and
Cross
,
C.
,
2010
, “
An Energy Based Fatigue Life Prediction Framework for In-Service Structural Components
,”
Exp. Mech.
,
51
(
5
), pp.
707
718
.10.1007/s11340-010-9365-z
16.
Wertz
,
J.
,
Shen
,
M.-H. H.
,
George
,
T.
,
Cross
,
C.
, and
Scott-Emuakpor
,
O.
,
2011
, “
An Energy-Based Torsional-Shear Fatigue Lifing Method
,”
Exp. Mech.
,
52
, pp.
705
715
.10.1007/s11340-011-9536-6
17.
Letcher
,
T.
,
Shen
,
H.
,
Scott-Emuakpor
,
O.
,
George
,
T.
, and
Cross
,
C.
,
2012
, “
An Energy Based Critical Fatigue Life Prediction Method for AL6061-T6
,”
Fatigue Fract. Eng. Mater. Struct.
,
35
(
9
), pp.
861
870
.10.1111/j.1460-2695.2011.01669.x
18.
Wertz
,
J.
,
Shen
,
M.-H. H.
,
Scott-Emuakpor
,
O.
,
George
,
T.
, and
Cross
,
C.
,
2012
, “
An Energy-Based Axial Isothermal-Mechanical Fatigue Lifing Procedure
,”
ASME J. Eng. Gas Turbines Power
,
134
(
2
), p.
024502
.10.1115/1.4004394
19.
Wertz
,
J.
,
Shen
,
M.-H. H.
,
Scott-Emuakpor
,
O.
,
George
,
T.
, and
Cross
,
C.
,
2012
, “
An Energy-Based Axial Isothermal-Mechanical Fatigue Lifing Method
,”
ASME J. Eng. Gas Turbines Power
,
134
(
10
), p.
102502
.10.1115/1.4007121
20.
Ramberg
,
W.
, and
Osgood
,
W.
,
1943
, “
Description of Stress-Strain Curves by Three Parameters
,” NACA Technical Note No. 902, pp.
1
29
.
21.
Halford
,
G. R.
,
1966
, “
The Energy Required for Fatigue
,”
J. Mater.
,
1
, pp.
3
18
.
22.
Martin
,
D. E.
, and
Brinn
,
J.
,
1959
, “
Some Observations on the Plastic Work Required to Fracture Stainless Steel Under Cyclic Loading
,”
ASTM Proc.
,
59
, pp.
677
690
.
23.
Martin
,
D. E.
,
1961
, “
An Energy Criterion for Low-Cycle Fatigue
,”
J. Basic Eng.
,
83
, pp.
565
571
.10.1115/1.3662268
24.
Chang
,
C. S.
,
Pimbley
,
W. T.
, and
Conway
,
H. D.
, “
An Analysis of Metal Fatigue Based on Hysteresis Energy
,”
Exp. Mech.
,
8
, pp.
133
137
.10.1007/BF02326108
25.
ASTM
,
2007
, “
Standard Practice for Conducting Force Controlled Constant Amplitude Axial Fatigue Tests of Metallic Materials
,”
Annual Book of ASTM Standards
, pp.
1
5
.
26.
ASTM
,
2004
, “
Standard Practice for Strain-Controlled Fatigue Testing
,”
Annual Book of ASTM Standards
, pp.
1
16
.
27.
ASTM
,
2003
, “
Standard Test Methods for Tension Testing of Metallic Materials
,”
Annual Book of ASTM Standards
, pp.
1
23
.
28.
Dieter
,
G.
,
1986
,
Mechanical Metallurgy
, 3rd ed.,
McGraw-Hill
,
Boston, MA
.
You do not currently have access to this content.