In this study, a hierarchical multiscale homogenization procedure aimed at predicting the effective mechanical properties of silica/epoxy nanocomposites is presented. First, the mechanical properties of the amorphous silica nanoparticles are investigated by means of molecular dynamics (MD) simulations. At this stage, the MD modeling of three-axial tensile loading of amorphous silica is carried out to estimate the elastic properties. Second, the conventional twp phase homogenization techniques such as finite elements (FE), Mori-Tanaka (M-T), Voigt and Reuss methods are implemented to evaluate the overall mechanical properties of the silica/epoxy nanocomposite at different temperatures and at constant weight ratio of 5%. At this point, the mechanical properties of silica obtained in the first stage are used as the inputs of the reinforcing phase. Comparison of the FE and M-T results with the experimental results in a wide range of temperatures reveals fine agreement; however, the FE results are in better agreement with the experiments than those obtained by M-T approach. Additionally, the results predicted by FE and M-T methods are closer to the lower bound (Reuss), which is due to lowest surface to volume ratio of spherical particles.

References

1.
Piggott
,
M.
, 2002,
Load Bearing Fibre Composites
, 2nd ed.,
Kluwer Academic Publisher
,
Dordrecht
.
2.
Desai
,
A. V.
, and
Haque
,
M. A.
, 2005, “
Mechanics of the Interface for Carbon Nanotube–Polymer Composites
,”
Thin-Walled Struct.
,
43
, pp.
1787
1803
.
3.
Blackman
,
B. R. K.
,
Kinloch
,
A. J.
,
Sohn Lee
,
J.
,
Taylor
,
A. C.
,
Agarwal
,
R.
,
Schueneman
,
G.
, and
Sprenger
,
S.
, 2007, “
The Fracture and Fatigue Behaviour of Nano-Modified Epoxy Polymers
,”
J. Mater. Sci.
,
42
(
16
), pp.
7049
7051
.
4.
Bugnicourt
,
E.
,
Galy
,
J.
,
Gérard
,
J. F.
,
Boué
,
F.
, and
Barthel
,
H.
, 2007, “
Effect of Sub-Micron Silica Fillers on the Mechanical Performances of Epoxy-Based Composites
,”
Polymer
,
48
(
6
), pp.
1596
1605
.
5.
Laachachi
,
A.
,
Cochez
,
M.
,
Ferriol
,
M.
,
Lopez-Cuesta
,
J. M.
, and
Leroy
,
E.
, 2005, “
Influence of TiO2 and Fe2O3 Fillers on the Thermal Properties of Poly(Methyl Methacrylate) (PMMA)
,”
Mater. Lett.
,
59
(
1
), pp.
36
39
.
6.
Zhang
,
H.
,
Zhang
,
Z.
,
Friedrich
,
K.
, and
Eger
,
C.
, 2006, “
Property Improvements of In Situ Epoxy Nanocomposites With Reduced Interparticle Distance at High Nanosilica Content
,”
Acta Mater.
,
54
(
7
), pp.
1833
1842
.
7.
Zhang
,
Y.
,
Bai
,
S.
,
Li
,
X.
, and
Zhang
,
Z.
, 2009, “
Effect of PPO-g-MA on Structures and Properties of PPO/PA6/Short Glass Fiber Composites
,”
J. Polym. Sci., Part B: Polym. Phys.
,
47
(
22
), pp.
2188
2197
.
8.
Kang
,
S.
,
Hong
,
S. I.
,
Choe
,
C. R.
,
Park
,
M.
,
Rim
,
S.
, and
Kim
,
J.
, 2001, “
Preparation and Characterization of Epoxy Composites Filled With Functionalized Nanosilica Particles Obtained via Sol–Gel Process
,”
Polymer
,
42
(
3
), pp.
879
887
.
9.
Zhang
,
H.
,
Tang
,
L. C.
,
Zhang
,
Z.
,
Friedrich
,
K.
, and
Sprenger
,
S.
, 2008, “
Fracture Behaviours of In Situ Silica Nanoparticle-Filled Epoxy at Different Temperature
,”
Polymer
,
49
(
17
), pp.
3816
3825
.
10.
Hbaieb
,
K.
,
Wang
,
Q. X.
,
Chia
,
Y. H. J.
, and
Cotterell
,
B.
, 2007, “
Modelling Stiffness of Polymer/Clay Nanocomposites
,”
Polymer
,
48
(
3
), pp.
901
909
.
11.
Torquato
,
S.
, 2002,
Random Heterogeneous Materials: Microstructure and Macroscopic Properties
,
Springer
,
New York
.
12.
Baniassadi
,
M.
,
Garmestani
,
H.
,
Li
,
D. S.
,
Ahzi
,
S.
,
Khaleel
,
M.
, and
Sun
,
X.
, 2011, “
Three-Phase Solid Oxide Fuel Cell Anode Microstructure Realization Using Two-Point Correlation Functions
,”
Acta Mater.
,
59
(
1
), pp.
30
43
.
13.
Li
,
D. S.
,
Baniassadi
,
M.
,
Garmestani
,
H.
,
Ahzi
,
S.
,
Reda-Taha
,
M. M.
, and
Ruch
,
D.
, 2010, “
3D Reconstruction of Carbon Nanotube Composite Microstructure Using Correlation Functions
,”
J. Comput. Theor. Nanosci.
,
7
(
8
), pp.
1462
1468
.
14.
Haile
,
J. M.
1992,
Molecular Dynamic Simulation
,
John Wiley & Sons
,
New York
.
15.
Mortazavi
,
B.
,
Afaghi Khatibi
,
A.
, and
Politis
,
C.
, 2009, “
Molecular Dynamics Investigation of Loading Rate Effects on Mechanical-Failure Behaviour of FCC Metals
,”
J. Comput. Theor. Nanosci.
,
6
(
3
), pp.
644
652
.
16.
Khatibi
,
A. A.
, and
Mortazavi
,
B.
, 2008, “
A study on the Nanoindentation Behaviour of Single Crystal Silicon Using Hybrid MD-FE Method
,”
Adv Mater. Res.
,
32
, pp.
259
262
.
17.
Aly
,
M. F.
,
Ng
,
E.
,
Veldhuis
,
S. C.
, and
Elbestawi
,
M. A.
, 2006, “
Prediction of Cutting Forces in the Micro-Machining of Silicon Using a ‘hybrid molecular dynamic-finite element analysis’ force model
,”
Int. J. Mach. Tools Manuf.
,
46
(
14
), pp.
1727
1739
.
18.
Sperandio
,
C.
,
Laachachi
,
A.
,
Ruch
,
D.
,
Poilâne
,
C.
,
Bourson
,
P.
,
Salvestrini
,
J. P.
, and
Ahzi
,
S.
, 2010, “
Use of Functionalized Nanosilica to Improve Thermo-Mechanical Properties of Epoxy Adhesive Joint Bonding Aluminium Substrates
,”
J. Nanosci. Nanotechnol.
,
10
(
4
), pp.
2844
9
.
19.
Beest
,
B. W. H.
,
Kramer
,
G. J.
, and
Santen
,
R. A.
, 1990, “
Force Fields for Silicas and Aluminophosphates Based on Ab Initio Calculations
,”
Phys. Rev. Lett.
,
64
(
16
), pp.
1955
1958
.
20.
Zhang
,
C.
,
Duan
,
Z.
, and
Li
,
M.
, 2010, “
Interstitial Voids in Silica Melts and Implication for Argon Solubility Under High Pressures
,”
Geochim. Cosmochim. Acta
,
74
(
14
), pp.
4140
4149
.
21.
Malavasi
,
G.
,
Menziani
,
M. C.
,
Pedone
,
A.
, and
Segre
,
U.
, 2006, “
Void Size Distribution in MD-Modelled Silica Glass Structures
,”
J. Non-Cryst. Solids
,
352
(
3
), pp.
285
296
.
22.
Muralidharan
,
K.
,
Simmons
,
J. H.
,
Deymier
,
P. A.
, and
Runge
,
K.
, 2005, “
Molecular Dynamics Studies of Brittle Fracture in Vitreous Silica: Review and Recent Progress
,”
J, Non-Cryst, Solids
,
351
(
18
), pp.
1532
1542
.
23.
Mori
,
T.
, and
Tanaka
,
K.
, 1973, “
Average Stress in Matrix and Average Elastic Energy of Materials With Misfitting Inclusions
,”
Acta Metall.
21
(
5
), pp.
571
574
.
24.
Benveniste
,
Y.
, 1987, “
A New Approach to the Application of Mori-Tanaka’s Theory in Composite Materials
,”
Mech. Mater.
,
6
(
2
), pp.
147
157
.
25.
Odegard
,
G. M.
,
Clancy
,
T. C.
, and
Gates
,
T. S.
, 2005, “
Modeling of the Mechanical Properties of Nanoparticle/Polymer Composites
,”
Polymer
,
46
(
2
), pp.
53
562
.
26.
Montazeri
,
A.
, and
Naghdabadi
,
R.
, 2010, “
Investigation of the Interphase Effects on the Mechanical Behavior of Carbon Nanotube Polymer Composites by Multiscale Modeling
,”
J. Appl. Polym. Sci.
117
(
1
), pp.
361
367
.
You do not currently have access to this content.