This paper deals with the spallation induced by shock wave propagation in targets during the laser shock peening process. Physical aspects concerning laser-matter interaction, shock wave propagation, and spallation are considered. A continuous kinetic model for the spallation process is included in a one-dimensional finite-difference hydrodynamic code using Lagrangian coordinates in order to calculate the laser-induced spallation phenomena. Shock wave propagation in solids is calculated and validated by experimental data. The spallation zone location is then calculated for various materials with different thickness of foils and various laser shock peening parameters. The numerical simulations are compared with previously reported experimental results and good agreement is obtained for the spallation threshold and damage zone location.

1.
Berthe
,
L.
,
Fabbro
,
R.
,
Peyre
,
P.
,
Tollier
,
L.
, and
Bartnicki
,
E.
, 1997, “
Shock Waves From a Water-Confined Laser-Generated Plasma
,”
J. Appl. Phys.
0021-8979,
82
(
6
), pp.
2826
2832
.
2.
Wu
,
B.
, and
Shin
,
Y. C.
, 2005, “
A Self-Closed Thermal Model for Laser Shock Peening Under the Water Confinement Regime Configuration and Comparisons to Experiments
,”
J. Appl. Phys.
0021-8979,
97
(
11
), p.
113517
.
3.
Braisted
,
W.
, and
Brockman
,
R.
, 1999, “
Finite Element Simulation of Laser Shock Peening
,”
Int. J. Fatigue
0142-1123,
21
, pp.
719
724
.
5.
Gupta
,
V.
,
Yuan
,
J.
, and
Pronin
,
A.
, 1994, “
Recent Developments in the Laser Spallation Technique to Measure the Interface Strength and Its Relationship to Interface Toughness With Applications to Metal/Ceramic, Ceramic/Ceramic and Ceramic/Polymer Interfaces
,”
J. Adhes. Sci. Technol.
0169-4243,
8
(
6
), pp.
713
747
.
6.
Auroux
,
E.
,
Boustie
,
M.
,
Romain
,
J. P.
,
Bertheau
,
D.
,
Peyre
,
P.
,
Berthe
,
L.
, and
Bartnicki
,
E.
, 2001, “
Debonding Study of Ni-Base Substrate/Pt Coatings Interfaces Using Laser Shock Waves: Characterization of the Targets and Experimental Study
,”
Surf. Coat. Technol.
0257-8972,
138
, pp.
269
277
.
7.
Cottet
,
F.
, and
Boustie
,
M.
, 1989, “
Spallation studies in Aluminum Targets Using Shock Waves Induced in Laser Irradiation at Various Pulse Durations
,”
J. Appl. Phys.
0021-8979,
66
(
9
), pp.
4067
4073
.
8.
Fortov
,
V. E.
, and
Kostin
,
V. V.
, 1991, “
Spallation of Metals Under Laser Irradiation
,”
J. Appl. Phys.
0021-8979,
70
(
8
), pp.
4524
4531
.
9.
Tollier
,
L.
,
Fabbro
,
R.
, and
Bartnicki
,
E.
, 1998, “
Study of the Laser-Driven Spallation Process by the Velocity Interferometer System for Any Reflector Interferometry Technique. I. Laser-Shock Characterization
,”
J. Appl. Phys.
0021-8979,
83
(
3
), pp.
1224
1230
.
10.
Tollier
,
L.
, and
Fabbro
,
R.
, 1998, “
Study of the Laser-Driven Spallation Process by the VISAR Interferometry Technique. II. Experimental and Simulation of the Spallation Process
,”
J. Appl. Phys.
0021-8979,
83
(
3
), pp.
1231
1237
.
11.
Bolis
,
C.
,
Berthe
,
L.
,
Boustie
,
M.
,
Arrigoni
,
M.
,
Barradas
,
S.
, and
Jeandin
,
M.
, 2007, “
Physical Approach to Adhesion Testing Using Laser-Driven Shock Waves
,”
J. Phys. D
0022-3727,
40
, pp.
3155
3163
.
12.
Meyers
,
M. A.
, 1994,
Dynamic Behavior of Materials
,
Wiley-Interscience
,
New York
.
13.
Miklowitz
,
J.
, 1969,
Wave Propagation in Solids
,
ASME
,
New York
.
14.
Kanel
,
G. I.
,
Razorenov
,
S. V.
, and
Fortov
,
V. E.
, 2004,
Shock-Wave Phenomena and the Properties of Condensed Matter
,
Springer-Verlag
,
New York
.
15.
Peikrishvili
,
A. B.
,
Japaridze
,
L. A.
,
Staudhammer
,
K. P.
,
Marquis
,
F. S.
,
Chikhradze
,
N. M.
,
Gobejishvili
,
T. G.
, and
Bantzuri
,
E. G.
, 2000, “
Explosive Compaction of Clad Graphite Powders and Obtaining of Coating on Their Base
,”
Proceedings of EXPLOMET 2000, International Conference on Fundamental Issues and Applications of Shock-Wave and High-Strain-Rate Phenomena
,
K. P.
Staudhammer
,
L. E.
Murr
, and
M. A.
Meyers
, eds.,
Elsevier
,
Albuquerque, NM
, pp.
249
258
.
16.
Davison
,
L.
, 2008,
Fundamentals of Shock Wave Propagation in Solids
,
Springer-Verlag
,
Berlin
, Chap. 2-4.
17.
Antoun
,
T.
,
Seaman
,
L.
,
Curran
,
D. R.
,
Kanel
,
G. I.
,
Razorenov
,
S. V.
, and
Utkin
,
A. V.
, 2003,
Spall Fracture
,
Springer-Verlag
,
New York
, Chap. 2, 6.
18.
Fan
,
Y.
,
Wang
,
Y.
,
Vukelic
,
S.
, and
Yao
,
Y. L.
, 2005, “
Wave-Solid Interactions in Laser-Shock-Induced Deformation Processes
,”
J. Appl. Phys.
0021-8979,
98
, p.
104904
.
19.
Thoma
,
K.
,
Hornemann
,
U.
,
Sauer
,
M.
, and
Schneider
,
E.
, 2005, “
Shock Waves—Phenomenology, Experimental, and Numerical Simulation
,”
Meteorit. Planet. Sci.
1086-9379,
40
, pp.
1283
1298
.
20.
Peters
,
D. J.
, 1978, “
HUFF, A One-Dimensional Hydrodynamics Code for Strong Shocks
,” MS thesis, Air Force Institute of Technology.
21.
Mitchell
,
A. C.
, and
Nellis
,
W. J.
, 1981, “
Shock Compression of Aluminum, Copper, and Tantalum
,”
J. Appl. Phys.
0021-8979,
52
(
5
), pp.
3363
3374
.
You do not currently have access to this content.