Discrete dislocation dynamics is a numerical tool developed to model the plasticity of crystalline materials at an intermediate length scale, between the atomistic modeling and the crystal plasticity theory. In this review we show, using examples from the literature, how a discrete dislocation model can be used either in a hierarchical or a concurrent multiscale framework. In the last section of this review, we show through the uniaxial compression of microcrystal application, how a concurrent multiscale model involving a discrete dislocation framework can be used for predictive purposes.

1.
Zimmerman
,
J. A.
,
Gao
,
H.
, and
Abraham
,
F. F.
, 2000, “
Generalized Stacking Fault Energies for Embedded Atom FCC Metals
,”
Modell. Simul. Mater. Sci. Eng.
0965-0393,
8
, pp.
103
115
.
2.
Kim
,
S. -G.
,
Horstemeyer
,
M. F.
,
Baskes
,
M. I.
,
Rais-Rohani
,
M.
,
Kim
,
S.
,
Jelinek
,
B.
,
Houze
,
J.
,
Moitra
,
A.
, and
Liyanage
,
L.
, 2009, “
Semi-Empirical Potential Methods for Atomistic Simulations of Metals and Their Construction Procedures
,”
ASME J. Eng. Mater. Technol.
0094-4289,
131
(
4
), p.
041210
.
3.
Sevillano
,
J. G.
, 1991, “
Substructure and Strengthening of Heavily Deformed Single and Two-Phase Metallic Materials
,”
J. Phys. III
1155-4320,
1
, pp.
967
988
.
4.
Horstemeyer
,
M. F.
,
Baskes
,
M.
, and
Plimpton
,
S. J.
, 2001, “
Length Scale and Time Scale Effects on the Plastic Flow of fcc Metals
,”
Acta Mater.
1359-6454,
49
, pp.
4363
4374
.
5.
Canova
,
G.
, and
Kubin
,
L.
, 1991, “
Dislocation Microstructure and Plastic Flow: A Three Dimensional Simulation
,”
Continuum Models and Discrete Systems
, Vol.
2
,
G. A.
Maugin
, eds.,
Longman Scientific and Technical
,
Harlow, UK
, pp.
93
101
.
6.
Zbib
,
H. M.
,
Rhee
,
M.
, and
Hirth
,
J. P.
, 1996, “
3D Simulation of Curved Dislocations: Discretization and Long Range Interactions
,”
Advances in Engineering Plasticity and Its Applications
,
T.
Abe
and
T.
Tsuta
, eds.,
Pergamon
,
New York
, pp.
15
20
.
7.
Zbib
,
H. M.
, and
Diaz de la Rubia
,
T.
, 2001, “
A Multiscale Model of Plasticity: Patterning and Localization
,”
Material Science for the 21st Century
, Vol
A
,
The Society of Materials Science
,
Japan
, pp.
341
347
.
8.
Rodney
,
D.
, and
Finel
,
A.
, 2001, “
Influences of Interface and Dislocation Behavior on Microstructure Evolution
,”
Mater. Res. Soc. Symp. Proc.
0272-9172,
652
, pp.
Y4.9.1
6
.
9.
Wang
,
Y. U.
,
Jin
,
Y. M.
, and
Khachaturyan
,
A. G.
, 2003, “
Phase Field Microelasticity Modeling of Dislocation Dynamics Near Free Surface and in Heteroepitaxial Thin Films
,”
Acta Mater.
1359-6454,
51
, pp.
4209
4223
.
10.
Rodney
,
D.
,
Le Bouar
,
Y.
, and
Finel
,
A.
, 2003, “
Phase Field Methods and Dislocations
,”
Acta Mater.
1359-6454,
51
, pp.
17
30
.
11.
Bronchard
,
Q.
,
Le Bouar
,
Y.
, and
Finel
,
A.
, 2006, “
Quantitative Phase Field Modeling of Precipitation Process
,”
Adv. Eng. Mater.
1438-1656,
8
, pp.
1245
1248
.
12.
Marin
,
E. B.
, and
Dawson
,
P. R.
, 1998, “
On Modeling the Elasto-Viscoplastic Response of Metals Using Polycrystal Plasticity
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
165
, pp.
1
21
.
13.
Horstemeyer
,
M. F.
,
Potirniche
,
G.
, and
Marin
,
E. B.
, 2005, “
Mesoscale-Macroscale Continuum Modeling: Crystal Plasticity
,”
Handbook for Materials Modeling
,
S.
Yip
, ed.,
Springer
,
Dordrecht, The Netherlands
, Chap. 3.
14.
Staroselsky
,
A.
, and
Anand
,
L.
, 2003, “
A Constitutive Model for hcp Materials Deforming by Slip and Twinning: Application to Magnesium Alloy AZ31B
,”
Int. J. Plast.
0749-6419,
19
, pp.
1843
1864
.
15.
Salem
,
A. A.
,
Kalidindi
,
S. R.
, and
Semiatin
,
S. L.
, 2005, “
Strain Hardening Due to Deformation Twinning in α-Titanium: Constitutive Relations and Crystal
,”
Acta Mater.
1359-6454,
53
, pp.
3495
3502
.
16.
Groh
,
S.
,
Marin
,
E. B.
,
Horstemeyer
,
M. F.
, and
Zbib
,
H. M.
, 2009, “
Multiscale Modeling of the Plasticity in an Aluminum Single Crystal
,”
Int. J. Plast.
0749-6419,
25
, pp.
1456
1473
.
17.
Bammann
,
D. J.
,
Chiesa
,
M. L.
, and
Johnson
,
G. C.
, 1996,
Theoretical and Applied Mechanics 1996
(
Proceedings of the 19th International Congress of Theoretical and Applied Mechanics
),
R.
Tatsumi
,
E.
Wanabe
, and
T.
Kambe
, eds.,
ICTAM
,
Kyoto, Japan
, pp.
359
376
.
18.
Shenoy
,
M.
,
Tjiptowidjojo
,
Y.
, and
McDowell
,
D.
, 2008, “
Microstructure-Sensitive Modeling of Polycrystalline IN 100
,”
Int. J. Plast.
0749-6419,
24
, pp.
1694
1730
.
19.
Liu
,
W. K.
,
Karpov
,
E. G.
,
Zhang
,
S.
, and
Park
,
H. S.
, 2004, “
An Introduction to Computational Nanomechanics and Materials
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
193
, pp.
1529
1578
.
20.
Curtin
,
W. A.
, and
Miller
,
R. E.
, 2003, “
Atomistic/Continuum Coupling in Computational Materials Science
,”
Modell. Simul. Mater. Sci. Eng.
0965-0393,
11
, pp.
R33
R68
.
21.
E
,
W.
,
Engquist
,
B.
,
Li
,
X.
,
Ren
,
W.
, and
Vanden-Eijnden
,
E.
, 2004, “
The Heterogeneous Multiscale Method: A Review
,” Princeton University, http://www.math.princeton.edu/multiscale/http://www.math.princeton.edu/multiscale/
22.
Brown
,
L.
, 1964, “
The Self-Stress of Dislocations and the Shape of Extended Nodes
,”
Philos. Mag.
0031-8086,
10
, pp.
441
466
.
23.
Bacon
,
D.
, 1967, “
A Method for Describing a Flexible Dislocation
,”
Phys. Status Solidi
0031-8957,
23
, pp.
527
538
.
24.
Foreman
,
A.
, 1967, “
The Bowing of a Dislocation Segment
,”
Philos. Mag.
0031-8086,
15
, pp.
1011
1021
.
25.
Amodeo
,
R. J.
, and
Ghoniem
,
N. M.
, 1990, “
Dislocation Dynamics. I. A proposed Methodology for Deformation Micromechanics
,”
Phys. Rev. B
0163-1829,
41
, pp.
6958
6967
.
26.
Kubin
,
L.
,
Canova
,
G.
,
Condat
,
M.
,
Devincre
,
B.
,
Pontikis
,
V.
, and
Bréchet
,
Y.
, 1992, “
Dislocation Microstructures and Plastic Flow: A 3D Simulation
,”
Solid State Phenom.
1012-0394,
23–24
, pp.
455
472
.
27.
Volterra
,
V.
, 1907, “
Sur L'Equilibre des Corps Elastiques Multiplement
,”
Ann. Ecole Nom. Sup.
,
3
(
24
), pp.
401
517
.
28.
Burgers
,
J. M.
, 1939, “
Report of a Conference of Strength of Solids
,”
Proc. K. Ned. Akad. Wet.
0370-0348,
47
, pp.
283
378
.
29.
Hirth
,
J.
, and
Lothe
,
J.
, 1982,
Theory of Dislocations
, 2nd ed.,
Wiley
,
New York
.
30.
Madec
,
R.
,
Devincre
,
B.
, and
Kubin
,
L.
, 2001, “
New Line Model for Optimized Dislocation Dynamics Simulations
,”
Mater. Res. Soc. Symp. Proc.
0272-9172,
653
, pp.
Z1.8.1
6
.
31.
Devincre
,
B.
,
Kubin
,
L.
,
Lemarchand
,
C.
, and
Madec
,
R.
, 2001, “
Mesoscopic Simulations of Plastic Deformation
,”
Mater. Sci. Eng., A
0921-5093,
309–310
, pp.
211
219
.
32.
Zbib
,
H. M.
,
Rhee
,
M.
, and
Hirth
,
J. P.
, 1998, “
On Plastic Deformation and the Dynamics of 3D Dislocations
,”
Int. J. Mech. Sci.
0020-7403,
40
, pp.
113
127
.
33.
Arsenlis
,
A.
,
Cai
,
W.
,
Tang
,
M.
,
Rhee
,
M.
,
Oppelstrup
,
T.
,
Hommes
,
G.
,
Pierce
,
T. G.
, and
Bulatov
,
V. V.
, 2007, “
Enabling Strain Hardening Simulations With Dislocation Dynamics
,”
Modell. Simul. Mater. Sci. Eng.
0965-0393,
15
, pp.
553
595
.
34.
Křišt'an
,
J.
, and
Kratochvíl
,
J.
, 2008, “
Estimates of Stress in the Channel of Persistent Slip Bands Based on Dislocation Dynamics
,” Special Issue of
Mater. Sci. Forum
0255-5476,
567-568
, pp.
405
408
.
35.
Ghoniem
,
N. M.
, and
Sun
,
L. Z.
, 1999, “
Fast-Sum Method for the Elastic Field of Three-Dimensional Dislocation Ensembles
,”
Phys. Rev. B
0163-1829,
60
, pp.
128
40
.
36.
Ghoniem
,
N. M.
,
Huang
,
J.
, and
Wang
,
Z.
, 2002, “
Affine Covariant-Contravariant Vector Forms for the Elastic Field of Parametric Dislocations in Isotropic Crystals
,”
Philos. Mag. Lett.
0950-0839,
82
, pp.
55
63
.
37.
Schwarz
,
K. W.
, 1999, “
Simulation of Dislocations on the Mesoscopic Scale. I. Methods and Examples
,”
J. Appl. Phys.
0021-8979,
85
, pp.
108
119
.
38.
Schwarz
,
K. W.
, 1999, “
Simulation of Dislocations on the Mesoscopic Scale. II. Application to Strained-Layer Relaxation
,”
J. Appl. Phys.
0021-8979,
85
, pp.
120
129
.
39.
Rhee
,
M.
,
Stolken
,
J.
,
Zbib
,
H. M.
,
Hirth
,
J. P.
, and
Diaz de la Rubia
,
T.
, 2001, “
Dislocation Dynamics Using Anisotropic Elasticity: Methodology and Analysis
,”
Mater. Sci. Eng., A
0921-5093,
309–310
, pp.
288
293
.
40.
Hirth
,
J. P.
,
Zbib
,
H. M.
, and
Lothe
,
J.
, 1998, “
Forces on High Velocity Dislocations
,”
Modell. Simul. Mater. Sci. Eng.
0965-0393,
6
, pp.
165
169
.
41.
Zbib
,
H. M.
,
Shehadeh
,
S.
,
Khan
,
S.
, and
Karami
,
G.
, 2003, “
Multiscale Dislocation Dynamics Plasticity
,”
Int. J. Multiscale Comp. Eng.
1543-1649,
1
, pp.
73
89
.
42.
Nadgorny
,
E.
(1998), Progress in Materials Science,
Dislocation Dynamics and Mechanical Properties
,
J. W.
Christian
,
P.
Haasen
, and
T. B.
Massalski
, eds., (
Pergamon Press
,
Oxford
, Vol.
31
), p.
536
.
43.
Wang
,
Z. Q.
,
Beyerlein
,
I. J.
, and
LeSar
,
R.
, 2007, “
The Importance of Cross-Slip in High Rate Deformation
,”
Modell. Simul. Mater. Sci. Eng.
0965-0393,
15
, pp.
675
690
.
44.
Wang
,
Z. Q.
,
Beyerlein
,
I. J.
, and
LeSar
,
R.
, 2009, “
Plastic Anisotropy in fcc Single Crystal in High Rate Deformation
,”
Int. J. Plast.
0749-6419,
25
, pp.
26
48
.
45.
Rhee
,
M.
,
Zbib
,
H. M.
,
Hirth
,
J. P.
,
Huang
,
H.
, and
de La Rubia
,
T. D.
, 1998, “
Models for Long/Short Range Interactions in 3D Dislocation Simulation
,”
Modell. Simul. Mater. Sci. Eng.
0965-0393,
6
, pp.
467
492
.
46.
Bulatov
,
V.
,
Rhee
,
M.
, and
Cai
,
W.
, 2001, “
Periodic Boundary Conditions for Dislocation Dynamics Simulations in Three Dimensions
,” in
Multiscale Modeling of Materials 2000
,
L. P.
Kubin
,
R.
Selinger
,
J. L.
Bassani
, and
K.
Cho
, eds. (
Materials Research Society
,
Warrendale, PA
, Vol.
653
), pp.
z1
z3
, .
47.
Madec
,
R.
,
Devincre
,
B.
, and
Kubin
,
L.
, 2003,
Mesoscopic Dynamics in Fracture Process and Strength of Materials
(
IUTAM Symposium
),
Y.
Shibutani
and
H.
Kitagawa
, eds.,
Kluwer Academic
,
The Netherlands
.
48.
Moulin
,
A.
,
Condat
,
M.
, and
Kubin
,
L. P.
, 1997, “
Simulation of Frank–Read Sources in Silicon
,”
Acta Mater.
1359-6454,
45
, pp.
2339
2348
.
49.
Tang
,
M.
,
Kubin
,
L. P.
, and
Canova
,
G. R.
, 1998, “
Dislocation Mobility and the Mechanical Response of b.c.c. Single Crystals: A Mesoscopic Approach
,”
Acta Mater.
1359-6454,
46
, pp.
3221
3235
.
50.
Kubin
,
L. P.
,
Madec
,
R.
, and
Devincre
,
B.
, 2003, “
Dislocation Intersections and Reactions in FCC and BCC Crystals
,”
Mater. Res. Soc. Symp. Proc.
0272-9172,
779
, pp.
W1.6
.
51.
Madec
,
R.
, and
Kubin
,
L. P.
, 2008, “
Second-Order Junctions and Strain Hardening in bcc and fcc Crystals
,”
Scr. Mater.
1359-6462,
58
, pp.
767
770
.
52.
Monnet
,
G.
,
Devincre
,
B.
, and
Kubin
,
L. P.
, 2004, “
Dislocation Study of Prismatic Slip Systems and Their Interactions in Hexagonal Close Packed Metals: Application to Zirconium
,”
Acta Mater.
1359-6454,
52
, pp.
4317
4328
.
53.
Taylor
,
G. I.
, 1938, “
Plastic Strain in Metals
,”
J. Inst. Met.
0020-2975,
62
, pp.
307
324
.
54.
Durinck
,
J.
,
Devincre
,
B.
,
Kubin
,
L. P.
, and
Cordier
,
P.
, 2007, “
Modeling the Plastic Deformation of Olivine by Dislocation Dynamics Simulations
,”
Am. Mineral.
0003-004X,
92
, pp.
1346
1357
.
55.
Weygand
,
D.
,
Friedman
,
L. H.
,
Van der Geissen
,
E.
, and
Needleman
,
A.
, 2002, “
Aspects of Boundary-Value Problem Solutions With Three-Dimensional Dislocation Dynamics
,”
Modell. Simul. Mater. Sci. Eng.
0965-0393,
10
, pp.
437
468
.
56.
Madec
,
R.
,
Devincre
,
B.
, and
Kubin
,
L.
, 2003, “
The Role of Collinear Interaction in Dislocation-Induced Hardening
,”
Science
0036-8075,
301
, pp.
1879
1882
.
57.
Kristan
,
J.
, and
Kratochvil
,
J.
, 2007, “
Interactions of Glide Dislocations in a Channel of a Persistent Slip Band
,”
Philos. Mag.
1478-6435,
87
, pp.
4593
4613
.
58.
Hirth
,
J. P.
,
Rhee
,
M.
, and
Zbib
,
H. M.
, 1996, “
Modeling of Deformation by a 3D Simulation of Multipole, Curved Dislocations
,”
J. Comput.-Aided Mater. Des.
0928-1045,
3
, pp.
164
166
.
59.
Verdier
,
M.
,
Fivel
,
M.
, and
Groma
,
I.
, 1998, “
Mesoscopic Scale Simulation of Dislocation Dynamics in fcc Metals: Principles and Applications
,”
Modell. Simul. Mater. Sci. Eng.
0965-0393,
6
, pp.
755
770
.
60.
Zbib
,
H. M.
,
Diaz de la Rubia
,
T.
,
Rhee
,
M.
, and
Hirth
,
J.
, 2000, “
3D Dislocation Dynamics: Stress-Strain Behavior and Hardening Mechanism in fcc and bcc Metals
,”
J. Nucl. Mater.
0022-3115,
276
, pp.
154
165
.
61.
Khraishi
,
T.
,
Zbib
,
H. M.
,
Diaz de la Rubia
,
T.
, and
Victoria
,
M.
, 2001, “
Modeling of Irradiation in Metals Using Dislocation Dynamics
,”
Philos. Mag. Lett.
0950-0839,
81
, pp.
583
593
.
62.
Khraishi
,
T.
,
Zbib
,
H. M.
,
Diaz de la Rubia
,
T.
, and
Victoria
,
M.
, 2002, “
Localized Deformation and Hardening in Irradiated Metals: Three-Dimensional Discrete Dislocation Dynamics Simulations
,”
Metall. Mater. Trans. B
1073-5615,
33B
, pp.
285
296
.
63.
Shin
,
C. S.
,
Fivel
,
M. C.
,
Verdier
,
M.
, and
Kwon
,
S. C.
, 2006, “
Numerical Methods to Improve the Computing Efficiency of Discrete Dislocation Dynamics Simulations
,”
J. Comput. Phys.
0021-9991,
215
(
2
), pp.
417
429
.
64.
Wang
,
Z.
,
Ghoniem
,
N.
,
Swaminarayan
,
S.
, and
LeSar
,
R.
, 2006, “
A Parallel Algorithm for 3D Dislocation Dynamics
,
J. Comput. Phys.
0021-9991,
219
(
2
), pp.
608
621
.
65.
Kuhlmann-Wilsdorf
,
D.
, 1989, “
Theory of Plastic Deformation: - Properties of Low Energy Dislocation Structures
,”
Mater. Sci. Eng., A
0921-5093,
113
, pp.
1
41
.
66.
Kuhlmann-Wilsdorf
,
D.
, 1995, “
Technological High Strain Deformation of ‘Wavy Glide’ Metals and LEDS
,”
Phys. Status Solidi A
0031-8965,
149
, pp.
225
241
.
67.
Van der Giessen
,
E.
, and
Needleman
,
A.
, 1995, “
Discrete Dislocation Plasticity: A Simple Planar Model
,”
Modell. Simul. Mater. Sci. Eng.
0965-0393,
3
, pp.
689
735
.
68.
Cleveringa
,
H. H. M.
,
van der Giessen
,
E.
, and
Needleman
,
A.
, 2000, “
A Discrete Dislocation Analysis of Mode I Crack Growth
,”
J. Mech. Phys. Solids
0022-5096,
48
, pp.
1133
1157
.
69.
Cleveringa
,
H. H. M.
,
van der Giessen
,
E.
, and
Needleman
,
A.
, 2001, “
A Discrete Dislocation Analysis of Rate Effects on Mode I Crack Growth
,”
Mater. Sci. Eng., A
0921-5093,
317
, pp.
37
43
.
70.
Deshpande
,
V. S.
,
Needleman
,
A.
, and
van der Giessen
,
E.
, 2003, “
Scaling of Discrete Dislocation Predictions for Near-Threshold Fatigue Crack Growth
,”
Acta Mater.
1359-6454,
51
, pp.
4637
4651
.
71.
Deshpande
,
V. S.
,
Needleman
,
A.
, and
van der Giessen
,
E.
, 2005, “
Plasticity Size Effects in Tension and Compression of Single Crystals
,”
J. Mech. Phys. Solids
0022-5096,
53
, pp.
2661
2691
.
72.
Benzerga
,
A. A.
,
Brechet
,
Y.
,
Needleman
,
A.
, and
Van der Giessen
,
E.
, 2004, “
Incorporating Three-Dimensional Mechanisms Into Two-Dimensional Dislocation Dynamics
,”
Modell. Simul. Mater. Sci. Eng.
0965-0393,
12
, pp.
159
196
.
73.
Balint
,
D. S.
,
Deshpande
,
V. S.
,
Needleman
,
A.
, and
Van der Giessen
,
E.
, 2006, “
Discrete Dislocation Plasticity Analysis of the Wedge Indentation of Films
,”
J. Mech. Phys. Solids
0022-5096,
54
, pp.
2281
2303
.
74.
Nicola
,
L.
,
Bower
,
A. F.
,
Kim
,
K. -S.
,
Needleman
,
A.
, and
Van der Giessen
,
E.
, 2007, “
Surface Versus Bulk Nucleation of Dislocations During Contact
,”
J. Mech. Phys. Solids
0022-5096,
55
, pp.
1120
1144
.
75.
Gomez-Garcia
,
D.
,
Devincre
,
B.
, and
Kubin
,
L. P.
, 2006, “
Dislocation Patterns and the Similitude Principle: 2.5D Mesoscale Simulation
,”
Phys. Rev. Lett.
0031-9007,
96
, p.
125503
.
76.
Palm
,
J.
, 1949, “
Stress-Strain Relation for Uniaxial Loading
,”
Appl. Sci. Res., Sect. A
0365-7132,
1
, pp.
198
210
.
77.
Voce
,
E.
, 1948, “
The Relation Between Stress and Strain for Homogeneous Deformation
,”
J. Inst. Met.
0020-2975,
74
, pp.
537
562
.
78.
Bulatov
,
V.
,
Abraham
,
F. F.
,
Kubin
,
L.
,
Devincre
,
B.
, and
Yip
,
S.
, 1998, “
Connecting Atomistic and Mesoscale Simulations of Crystal Plasticity
,”
Nature (London)
0028-0836,
391
, pp.
669
672
.
79.
Marian
,
J.
,
Cai
,
W.
, and
Bulatov
,
V. V.
, 2004, “
Dynamic Transitions in Dislocation Motion: From Smooth to Rough to Twinning
,”
Nature Mater.
1476-1122,
3
, pp.
158
163
.
80.
Olmsted
,
D. L.
,
Hector
,
L. G.
, Jr.
,
Curtin
,
W. A.
, and
Clifton
,
R. J.
, 2005, “
Atomistic Simulations of Dislocation Mobility in Al, Ni and Al/Mg Alloys
,”
Modell. Simul. Mater. Sci. Eng.
0965-0393,
13
, pp.
371
388
.
81.
Bulatov
,
V. V.
,
Hsiung
,
L. L.
,
Tang
,
M.
,
Arsenlis
,
A.
,
Bartelt
,
M. C.
,
Cai
,
W.
,
Florando
,
J. N.
,
Hiratani
,
M.
,
Rhee
,
M.
,
Hommes
,
G.
,
Pierce
,
T. G.
, and
Diaz de la Rubia
,
T.
, 2006, “
Dislocation Multi-Junctions and Strain Hardening
,”
Nature (London)
0028-0836,
440
, pp.
1174
1178
.
82.
Martinez
,
E.
,
Marian
,
J.
,
Arsenlis
,
A.
,
Victoria
,
M.
, and
Perlado
,
J. M.
, 2008, “
Atomistically Informed Dislocation Dynamics in fcc Crystals
,”
J. Mech. Phys. Solids
0022-5096,
56
, pp.
869
895
.
83.
Groh
,
S.
,
Marin
,
E. B.
,
Horstemeyer
,
M. F.
, and
Bammann
,
D. J.
, 2009, “
Dislocation Motion in Magnesium: A Study by Molecular Statics and Molecular Dynamics
,”
Model. Simul. Mater. Sci. Eng.
, accepted.
84.
Kocks
,
U. F.
, and
Mecking
,
H.
, 2003, “
Physics and Phenomenology of Strain Hardening: The FCC Case
,”
Prog. Mater. Sci.
0079-6425,
48
, pp.
171
273
.
85.
Kocks
,
U. F.
, and
Mecking
,
H.
, 1979, “
A Mechanism for Static and Dynamic Recovery
,”
Strength of Metals and Alloys
,
Pergamon
,
New York
, pp.
345
350
.
86.
Mecking
,
H.
, and
Estrin
,
Y.
, 1987, “
Microstructure Related Constitutive Modeling of Plastic Deformation
,”
Eighth International Symposium on Metallurgy and Material Science
, Riso, Denmark.
87.
Teodosiu
,
C.
,
Raphanel
,
J.
, and
Tabourot
,
L.
, 1993, “
Finite Implementation of the Large Elastoplastic Deformation of Multicrystals
,”
Large Plastic Deformation
,
C.
Teodosiu
,
J.
Raphanel
, and
F.
Sidoroff
, eds., pp.
153
168
.
88.
Tabourot
,
L.
,
Fivel
,
M.
, and
Rauch
,
E.
, 1997, “
Generalized Constitutive Laws for f.c.c. Single Crystal
,”
Mater. Sci. Eng., A
0921-5093,
234–236
, pp.
639
642
.
89.
Fivel
,
M.
,
Tabourot
,
L.
,
Rauch
,
E.
, and
Canova
,
G.
, 1998, “
Identification Through Mesoscopic Simulations of Macroscopic Parameters of Physically Based Constitutive Equations for the Plastic Behavior of fcc Single Crystals
,”
J. Phys. IV
1155-4339,
8
, pp.
151
158
.
90.
Franciosi
,
P.
, 1985, “
The Concepts of Latent Hardening and Strain Hardening in Metallic Single Crystals
,”
Acta Metall.
0001-6160,
33
, pp.
1601
1612
.
91.
Fivel
,
M.
, 1997, “
Etudes Numeriques a Diferentes Echelles de la Deformation Plastique des Monocristaux de Structure CFC
,” PhD dissertation, University of Grenoble.
92.
Devincre
,
B.
,
Kubin
,
L.
, and
Hoc
,
T.
, 2006, “
Physical Analyses of Crystal Plasticity by DD Simulations
,”
Scr. Mater.
1359-6462,
54
, pp.
741
746
.
93.
Queyreau
,
S.
,
Monnet
,
G.
, and
Devincre
,
B.
, 2008, “
Slip System Interactions in α-Iron Determined by Dislocation Dynamics Simulations
,”
Int. J. Plast.
0749-6419,
25
(
2
), pp.
361
377
.
94.
Preußner
,
J.
,
Rudnik
,
Y.
,
Brehm
,
H.
,
Völkl
,
R.
, and
Glatzel
,
U.
, 2009, “
A Dislocation Density Based Material Model to Simulate the Anisotropic Creep Behavior of Single-Phase and Two-Phase Single Crystals
,”
Int. J. Plast.
0749-6419,
25
, pp.
973
994
.
95.
Ohashi
,
T.
,
Kawamukai
,
M.
, and
Zbib
,
H.
, 2007, “
A Multiscale Approach for Modeling Scale-Dependent Yield Stress in Polycrystalline Metals
,”
Int. J. Plast.
0749-6419,
23
, pp.
897
914
.
96.
Ohashi
,
T.
, 1994, “
Numerical Modeling of Plastic Multislip in Metal Crystals of f.c.c. Type
,”
Philos. Mag. A
0141-8610,
70
(
5
), pp.
793
803
.
97.
Zbib
,
H. M.
,
Diaz de la Rubia
,
T.
, and
Bulatov
,
V.
, 2002, “
A Multiscale Model of Plasticity Based on Discrete Dislocation Dynamics
,”
ASME J. Eng. Mater. Technol.
0094-4289,
124
, pp.
78
87
.
98.
Yasin
,
H.
,
Zbib
,
H. M.
, and
Khaleel
,
M. A.
, 2001, “
Size and Boundary Effects in Discrete Dislocation Dynamics: Coupling With Continuum Finite Element
,”
Mater. Sci. Eng., A
0921-5093,
309–310
, pp.
294
299
.
99.
Martinez
,
R.
, and
Ghoniem
,
N. M.
, 2002, “
The Influence of Crystal Surfaces on Dislocation Interactions in Mesoscopic Plasticity: A Combined Dislocation Dynamics-Finite Element Approach
,”
Comput. Model. Eng. Sci.
1526-1492,
3
, pp.
229
243
.
100.
Tang
,
M.
,
Xu
,
G.
,
Cai
,
W.
, and
Bulatov
,
V. V.
, 2003, “
Dislocation Image Stresses at Free Surfaces by the Finite Element Method
,”
Thin Film Stresses and Mechanical Properties
, Vol.
795
,
S. G.
Corcoran
,
Y. -C.
Joo
,
N. R.
Moody
, and
Z.
Suo
, eds.,
Materials Research Society
,
Warrendale, PA
, pp.
U2.4.1
5
.
101.
Fivel
,
M. C.
,
Gosling
,
T. J.
, and
Canova
,
G. R.
, 1996, “
Implementing Image Stresses in a 3D Dislocation Simulation
,”
Modell. Simul. Mater. Sci. Eng.
0965-0393,
4
, pp.
581
596
.
102.
El-Awady
,
J. A.
,
Biner
,
S. B.
, and
Ghoniem
,
N.
, 2008, “
A Self-Consistent Boundary Element, Parametric Dislocation Dynamics Formulation of Plastic Flow in Finite Volumes
,”
J. Mech. Phys. Solids
0022-5096,
56
, pp.
2019
2035
.
103.
Liu
,
X. H.
, and
Schwarz
,
K. W.
, 2005, “
Modeling of Dislocations Intersecting a Free Surface
,”
Modell. Simul. Mater. Sci. Eng.
0965-0393,
13
, pp.
1233
1247
.
104.
Khraishi
,
T.
, and
Zbib
,
H. M.
, 2002, “
Free-Surface Effects in 3D Dislocation Dynamics: Formulation and Modeling
,”
ASME J. Eng. Mater. Technol.
0094-4289,
124
(
3
), pp.
342
351
.
105.
Khraishi
,
T.
, and
Zbib
,
H. M.
, 2002, “
Dislocation Dynamics Simulations of the Interaction Between a Short Rigid Fiber and a Glide Dislocation Pile-Up
,”
Comput. Mater. Sci.
0927-0256,
24
, pp.
310
322
.
106.
Tang
,
M.
,
Cai
,
W.
,
Xu
,
G.
, and
Bulatov
,
V. V.
, 2006, “
A Hybrid Method for Computing Forces on Curved Dislocations Intersecting Free Surfaces in Three-Dimensional Dislocation Dynamics
,”
Modell. Simul. Mater. Sci. Eng.
0965-0393,
14
, pp.
1139
1151
.
107.
Van der Giessen
,
E.
, and
Needleman
,
A.
, 2003, “
GNDs in Nonlocal Plasticity Theories: Lessons From Discrete Dislocation Simulations
,”
Scr. Mater.
1359-6462,
48
, pp.
127
132
.
108.
Déprés
,
C.
,
Robertson
,
C. F.
, and
Fivel
,
M. C.
, 2004, “
Low-Strain Fatigue in AISI 316L Steel Surface Grains: A Three-Dimensional Discrete Dislocation Dynamics Modeling of the Early Cycles I. Dislocation Microstructures and Mechanical Behavior
,”
Philos. Mag.
1478-6435,
84
, pp.
2257
2275
.
109.
Depres
,
C.
,
Robertson
,
C. F.
, and
Fivel
,
M. C.
, 2006, “
Low-Strain Fatigue in 316L Steel Surface Grains: A Three Dimension Discrete Dislocation Dynamics Modeling of the Early Cycles. Part 2: Persistent Slip Markings and Micro-Crack Nucleation
,”
Philos. Mag.
1478-6435,
86
, pp.
79
97
.
110.
Shin
,
C. S.
,
Fivel
,
M. C.
,
Verdier
,
M.
, and
Oh
,
K. H.
, 2003, “
Dislocation-Impenetrable Precipitate Interaction: A Three-Dimensional Discrete Dislocation Dynamics Analysis
,”
Philos. Mag.
1478-6435,
83
, pp.
3691
3704
.
111.
Shin
,
C. S.
,
Fivel
,
M. C.
, and
Kim
,
W. W.
, 2005, “
Three-Dimensional Computation of the Interaction Between a Straight Dislocation Line and a Particle
,”
Modell. Simul. Mater. Sci. Eng.
0965-0393,
13
, pp.
1163
1173
.
112.
Hughes
,
D. A.
,
Khan
,
S. M. A.
,
Godfrey
,
A.
, and
Zbib
,
H. M.
, 2001, “
Internal Structures of Deformation Induced Planar Dislocation Boundaries
,”
Mater. Sci. Eng., A
0921-5093,
309–310
, pp.
220
226
.
113.
Khan
,
S.
,
Zbib
,
H. M.
, and
Hughes
,
D.
, 2004, “
Modeling Planar Dislocation Boundaries Using a Multi-Scale Approach
,”
Int. J. Plast.
0749-6419,
20
, pp.
1059
92
.
114.
Shehadeh
,
M. A.
,
Zbib
,
H. M.
, and
Diaz de la Rubia
,
T.
, 2005, “
Multiscale Dislocation Dynamics Simulations of Shock Compression in Copper Single Crystal
,”
Int. J. Plast.
0749-6419,
21
, pp.
2369
2390
.
115.
Shehadeh
,
M. A.
,
Bringa
,
E. M.
,
Zbib
,
H. M.
,
McNaney
,
J. M.
, and
Remington
,
B. A.
, 2006, “
Simulation of Shock-Induced Plasticity Including Homogeneous and Heterogeneous Dislocation Nucleation
,”
Appl. Phys. Lett.
0003-6951,
89
, p.
171918
.
116.
Akasheh
,
F.
,
Zbib
,
H. M.
,
Hirth
,
J. P.
,
Hoagland
,
R. G.
, and
Misra
,
A.
, 2007, “
Interactions Between Glide Dislocations and Parallel Interfacial Dislocations in Nanoscale Strained Layers
,”
J. Appl. Phys.
0021-8979,
102
, p.
034314
.
117.
Akasheh
,
F.
,
Zbib
,
H. M.
,
Hirth
,
J. P.
,
Hoagland
,
R. G.
and
Misra
,
A.
, 2007, “
Dislocation Dynamics Analysis of Dislocation Intersections in Nanoscale Metallic Multilayered Composites
,”
J. Appl. Phys.
0021-8979,
101
, p.
084314
.
118.
Yashiro
,
K.
,
Kurose
,
F.
,
Nakashima
,
Y.
,
Kubo
,
K.
,
Tomita
,
Y.
, and
Zbib
,
H. M.
, 2006, “
Discrete Dislocation Dynamics Simulations of γ′ Precipitate and Interfacial Dislocation Network in Ni-Based Superalloys
,”
Int. J. Plast.
0749-6419,
22
, pp.
713
723
.
119.
Lemarchand
,
C.
,
Devincre
,
B.
, and
Kubin
,
L. P.
, 2001, “
Homogenization Method for a Discrete-Continuum Approach of Dislocation Dynamics
,”
J. Mech. Phys. Solids
0022-5096,
49
, pp.
1969
1982
.
120.
Devincre
,
B.
,
Roos
,
A.
, and
Groh
,
S.
, 2003,
Thermodynamics, Microstructures and Plasticity
(
NATO Science Series II: Mathematics, Physics and Chemistry
), 108th ed.,
A.
Finel
,
D.
Mazière
, and
M.
Véron
, eds.,
Kluwer
,
Dordrecht, The Netherlands
.
121.
Groh
,
S.
,
Devincre
,
B.
,
Kubin
,
L. P.
,
Roos
,
A.
,
Feyel
,
F.
, and
Chaboche
,
J.-L.
, 2003, “
Dislocations and Elastic Anisotropy in Heteroepitaxial Metallic Thin Films
,”
Philos. Mag. Lett.
0950-0839,
83
, pp.
303
313
.
122.
Groh
,
S.
,
Devincre
,
B.
,
Feyel
,
F.
,
Kubin
,
L.
,
Roos
,
A.
, and
Chaboche
,
J.-L.
, 2003, “
Discrete-Continuum Modeling of Metal Matrix Composites Plasticity
,”
Mesoscopic Dynamics in Fracture Process and Strength of Materials
,
Y.
Shibutani
and
H.
Kitagawa
, eds,
Kluwer
,
Dordrecht, The Netherlands
.
123.
Groh
,
S.
,
Devincre
,
B.
,
Kubin
,
L. P.
,
Roos
,
A.
,
Feyel
,
F.
, and
Chaboche
,
J.-L.
, 2005, “
Size Effects in Metal Matrix Composites
,”
Mater. Sci. Eng., A
0921-5093,
400–401
, pp.
279
282
.
124.
Liu
,
Z. L.
,
Liu
,
X. M.
,
Zhuang
,
Z.
, and
You
,
X. C.
, “
A Multi-Scale Computational Model of Crystal Plasticity at Submicron-to-Nanometer
,”
Int. J. Plast.
0749-6419,
25
(
8
), pp.
1413
1608
.
125.
Shilkrot
,
L. E.
,
Miller
,
R. E.
and
Curtin
,
W. A.
, 2002, “
Coupled Atomistic and Discrete Dislocation Plasticity
,
Phys. Rev. Lett.
0031-9007,
89
, p.
025501
.
126.
Shilkrot
,
L. E.
,
Miller
,
R. E.
, and
Curtin
,
W. A.
, 2004, “
Multiscale Plasticity Modeling: Coupled Atomistics and Discrete Dislocation Mechanics
,”
J. Mech. Phys. Solids
0022-5096,
52
, pp.
755
787
.
127.
Gao
,
H.
, and
Huang
,
Y.
, 2003, “
Geometrically Necessary Dislocation and Size-Dependent Plasticity
,”
Scr. Mater.
1359-6462,
48
, pp.
113
118
.
128.
Uchic
,
M. D.
,
Dimiduk
,
D. M.
,
Florando
,
J. N.
, and
Nix
,
W. D.
, 2004, “
Sample Dimensions Influence Strength and Crystal Plasticity
,”
Science
0036-8075,
305
, pp.
986
989
.
129.
Uchic
,
M. D.
, and
Dimiduk
,
D. M.
, 2005, “
A Methodology to Investigate Size Scale Effects in Crystalline Plasticity Using Uniaxial Compression
,”
Mater. Sci. Eng., A
0921-5093,
400–401
, pp.
268
78
.
130.
Greer
,
J. R.
,
Oliver
,
W. C.
, and
Nix
,
W. D.
, 2005, “
Size Dependence of Mechanical Properties of Gold at the Micron Scale in the Absence of Strain Gradients
,”
Acta Mater.
1359-6454,
53
, pp.
1821
30
.
131.
Greer
,
J. R.
, and
Nix
,
W. D.
, 2006, “
Nanoscale Gold Pillars Strengthened Through Dislocation Starvation
,”
Phys. Rev. B
0163-1829,
73
, p.
245410
.
132.
Shan
,
Z. W.
,
Mishra
,
R. K.
,
Syed Asif
,
S. A.
,
Warren
,
O. L.
, and
Minor
,
A. M.
, 2008, “
Mechanical Annealing and Source-Limited Deformation in Submicrometer-Diameter Ni Crystal
,”
Nature Mater.
1476-1122,
7
, pp.
115
119
.
133.
Parthasarathy
,
T. A.
,
Rao
,
S. I.
,
Dimiduk
,
D. M.
,
Uchic
,
M. D.
, and
Trinkle
,
D. R.
, 2007, “
Contribution to Size Effect of Yield Strength From the Stochastics of Dislocation Source Lengths in Finite Samples
,”
Scr. Mater.
1359-6462,
56
, pp.
313
316
.
134.
Tang
,
H.
,
Schwarz
,
K. W.
, and
Espinosa
,
H. D.
, 2007, “
Dislocation Escape-Related Size Effects in Single-Crystal Micropillars Under Uniaxial Compression
,”
Acta Mater.
1359-6454,
55
, pp.
1607
1616
.
135.
Weygand
,
D.
,
Poignant
,
M.
,
Gumbsch
,
P.
, and
Kraft
,
O.
, 2008, “
Three-Dimensional Dislocation Dynamics Simulation of the Influence of Sample Size on the Stress-Strain Behavior of fcc Single-Crystalline Pillars
,”
Mater. Sci. Eng., A
0921-5093,
483–484
, pp.
188
190
.
136.
Senger
,
J.
,
Weygand
,
D.
,
Gumbsch
,
P.
, and
Kraft
,
O.
, 2008, “
Discrete Dislocation Simulations of the Plasticity of Micro-Pillars Under Uniaxial Loading
,”
Scr. Mater.
1359-6462,
58
, pp.
587
590
.
137.
El-Awady
,
J. A.
,
Wen
,
M.
, and
Ghoniem
,
M. N.
, 2009, “
The Role of the Weakest-Link Mechanism in Controlling the Plasticity of Micropillars
,”
J. Mech. Phys. Solids
0022-5096,
57
, pp.
32
50
.
138.
Nix
,
W. D.
, and
Gao
,
H.
, 1998, “
Indentation Size Effects in Crystalline Materials: A Law for Strain Gradient Plasticity
,”
J. Mech. Phys. Solids
0022-5096,
46
, pp.
411
25
.
139.
Tang
,
H.
,
Schwarz
,
K. W.
, and
Espinosa
,
H. D.
, 2008, “
Dislocation-Source Shutdown and the Plastic Behavior of Single-Crystal Micropillars
,”
Phys. Rev. Lett.
0031-9007,
100
, pp.
185503
.
140.
Dimiduk
,
D. M.
,
Uchic
,
M. D.
, and
Parthasarathy
,
T. A.
, 2005, “
Size-Affected Single-Slip Behavior of Pure Nickel Microcrystals
,”
Acta Mater.
1359-6454,
53
, pp.
4065
4077
.
141.
Volkert
,
C.
, and
Lilleodden
,
E. T.
, 2006, “
Size Effects in the Deformation of Sub-Micron Au Columns
,”
Philos. Mag.
1478-6435,
86
, pp.
5567
5579
.
142.
Kubin
,
L. P.
, and
Devincre
,
B.
, 1999, “
From Dislocation Mechanisms to Dislocation Microstructures and Strain Hardening
,”
Deformation-Induced Microstructures: Analysis and Relation to Properties
(
20th Risoe Symposium
),
J. B.
Bilde Sørensen
,
J. V.
Carstensen
,
N.
Hansen
,
D.
Juul Jensen
,
T.
Leffers
,
W.
Pantleon
,
O. B.
Pedersen
, and
G.
Winther
, eds.,
Risoe National Laboratory
,
Roskilde, Denmark
, pp.
61
83
.
143.
Madec
,
R.
,
Devincre
,
B.
, and
Kubin
,
L. P.
, 2002, “
Simulation of Dislocation Patterns in Multislip
,”
Scr. Mater.
1359-6462,
47
, pp.
689
695
.
144.
Liu
,
Z. L.
,
Liu
,
X. M.
,
Zhuang
,
Z.
, and
You
,
X. C.
, 2009, “
Atypical Three-Stage-Hardening Mechanical Behavior of Cu Single-Crystal Micropillars
,”
Scr. Mater.
1359-6462,
60
, pp.
594
597
.
145.
Akarupa
,
S.
,
Zbib
,
H. M.
, and
Bahr
,
D. F.
, 2008, “
Heterogeneous Deformation and Dislocation Dynamics in Single Crystal Micropillars Under Compression
,” unpublished.
146.
Zbib
,
H. M.
,
Akarupa
,
S.
,
Akasheh
,
F.
,
Overman
,
C.
, and
Bahr
,
D.
, 2009, “
Deformation and Size Effects in Small Scale Structures
,” in
Macro to Nano Scale Inelastic behavior of Materials: Plasticity, Fatigue and Fracture
,
A.
Khan
and
B.
Farrokh
, eds. (
Proceedings of the 15th International Symposium on Plasticity and Its Current Applications
), Jan. 3–9,
St. Thomas
, pp.
220
222
.
147.
Devincre
,
B.
, and
Roberts
,
S. G.
, 1996, “
Three-Dimensional Simulation of Dislocation-Crack Interactions in BCC Metals at the Mesocopic Scale
,”
Acta Mater.
1359-6454,
44
, pp.
2891
2900
.
148.
Deshpande
,
V. S.
,
Needleman
,
A.
, and
van der Giessen
,
E.
, 2002, “
Discrete Dislocation Modeling of Fatigue Crack Propagation
,”
Acta Mater.
1359-6454,
50
, pp.
831
846
.
149.
Groh
,
S.
,
Olarnrithinun
,
S.
,
Curtin
,
W. A.
,
Needleman
,
A.
,
Deshpande
,
V. S.
, and
Van der Giessen
,
E.
, 2008, “
Fatigue Crack Growth From a Cracked Elastic Particle Into a Ductile Matrix
,”
Philos. Mag.
1478-6435,
88
, pp.
3565
3583
.
150.
Cottrell
,
A. H.
, and
Bilby
,
B. A.
, 1951, “
Mechanism for the Growth of Deformation Twins in Crystals
,”
Philos. Mag.
0031-8086,
42
, pp.
573
581
.
151.
Christian
,
J. W.
, and
Mahajan
,
S.
, 1995, “
Deformation Twinning
,”
Prog. Mater. Sci.
0079-6425,
39
, pp.
1
157
.
152.
Kalidindi
,
S. R.
, 1998, “
Incorporation of Deformation Twinning in Crystal Plasticity Models
,”
J. Mech. Phys. Solids
0022-5096,
46
, pp.
267
290
.
153.
Belak
,
J.
, 1998, “
On the Nucleation and Growth of Voids at High Strain-Rates
,”
J. Comput.-Aided Mater. Des.
0928-1045,
5
, pp.
193
206
.
154.
Rudd
,
R. E.
, and
Belak
,
J. F.
, 2002, “
Void Nucleation and Associated Plasticity in Dynamic Fracture of Polycrystalline Copper: An Atomistic Simulation
,”
Comput. Mater. Sci.
0927-0256,
24
, pp.
148
153
.
155.
Devincre
,
B.
, 1995, “
Three Dimensional Stress Fields Expressions for Straight Dislocation Segments
,”
Solid State Commun.
0038-1098,
93
, pp.
875
878
.
156.
Rhee
,
M.
, 1998, “
3-D Modeling of Dislocation Cells in Metals
,” Ph.D. thesis, Washington State University, Pullman, WA.
You do not currently have access to this content.