In this paper, continuous SiC fibers were embedded in an Al 6061 O matrix through ultrasonic consolidation at room temperature. The optimum embedding parameters were determined through peel tests and metallographic analysis. The influence of the embedded fiber volume fraction and base metal thickness on the interface bond strength was studied, and the fiber/matrix bond strength was tested through fiber pullout test. The results showed that embedding 0.8% volume fraction of SiC fiber in a 6061 O matrix could significantly increase and even its interfacial strength, but there is a threshold for embedded fiber volume fraction at specific parameters, over which the plastic flow and friction may be insufficient to have a strong bond at foil/foil interfaces between fibers. The study also showed that base metal thickness did not have significant influence on the interfacial strength with an exception of samples with a base metal thickness of 500μm. Based on the results, it was proposed that microfriction at consolidation interfaces plays an important role for joint formation, and localized plastic flow around fibers is important to have fibers fully and safely embedded.

1.
White
,
D. R.
, 2003, “
Ultrasonic Consolidation of Aluminium Tooling
,”
Advanced Materials and Processes
,
161
, pp.
64
65
.
2.
Matsunaga
,
T.
,
Matsuda
,
K.
,
Hatayama
,
T.
,
Shinozaki
,
K.
, and
Yoshida
,
M.
, 2007, “
Fabrication of Continuous Carbon Fiber-Reinforced Aluminum-Magnesium Alloy Composite Wires Using Ultrasonic Infiltration Method
,”
Composites, Part A
1359-835X,
38
(
8
), pp.
1902
1911
.
3.
Mizuuchi
,
K.
,
Inoue
,
K.
,
Sugioka
,
M.
,
Itami
,
M.
,
Kawahara
,
M.
, and
Yamauchi
,
I.
, 2006, “
Microstructure and Mechanical Properties of Boron-Fiber-Reinforced Titanium-Matrix Composites Produced by Pulsed Current Hot Pressing (PCHP)
,”
Mater. Sci. Eng., A
,
428
(
1–2
), pp.
175
179
. 0921-5093
4.
Fukumoto
,
S.
,
Hirose
,
A.
, and
Kobayashi
,
K. F.
, 1997, “
Evaluation of the Strength of Diffusion Bonded Joints in Continuous Fiber Reinforced Metal Matrix Composites
,”
J. Mater. Process. Technol.
,
68
(
2
), pp.
184
191
. 0924-0136
5.
Chen
,
L. -G.
,
Lin
,
S. -J.
, and
Chang
,
S. -Y.
, 2006, “
Tensile Properties and Thermal Expansion Behaviors of Continuous Molybdenum Fiber Reinforced Aluminum Matrix Composites
,”
Compos. Sci. Technol.
,
66
(
11–12
), pp.
1793
1802
. 0266-3538
6.
Korab
,
J.
,
Stefanik
,
P.
,
Kavecky
,
S.
,
Sebo
,
P.
, and
Korb
,
G.
, 2002, “
Thermal Conductivity of Unidirectional Copper Matrix Carbon Fibre Composites
,”
Composites, Part A
1359-835X,
33
(
4
), pp.
577
581
.
7.
Pattison
,
J.
,
Celotto
,
S.
,
Morgan
,
R.
,
Bray
,
M.
, and
O'Neill
,
W.
, 2007, “
Cold Gas Dynamic Manufacturing: A Non-Thermal Approach to Freeform Fabrication
,”
Int. J. Mach. Tools Manuf.
,
47
(
3–4
), pp.
627
634
. 0890-6955
8.
Kong
,
C. Y.
, and
Soar
,
R. C.
, 2005, “
Fabrication of Metal-Matrix Composites and Adaptive Composites Using Ultrasonic Consolidation Process
,”
Mater. Sci. Eng., A
,
412
(
1–2
), pp.
12
18
. 0921-5093
9.
Kong
,
C. Y.
,
Soar
,
R. C.
, and
Dickens
,
P. M.
, 2004, “
Optimum Process Parameters for Ultrasonic Consolidation of 3003 Aluminium
,”
J. Mater. Process. Technol.
0924-0136,
146
, pp.
181
187
.
10.
Kong
,
C. Y.
,
Soar
,
R. C.
, and
Dickens
,
P. M.
, 2003, “
Characterisation of Aluminium Alloy 6061 for the Ultrasonic Consolidation Process
,”
Mater. Sci. Eng., A
0921-5093,
363
(
1–2
), pp.
99
106
.
11.
Weare
,
N. E.
,
Antonevich
,
J. N.
, and
Monroe
,
R. E.
, 1960, “
Fundamental Studies of Ultrasonic Welding
,”
Weld. J. (Miami, FL, U.S.)
0043-2296,
39
, pp.
331s
341s
.
12.
Crinon
,
E.
, and
Evans
,
J. T.
, 1998, “
The Effect of Surface Roughness, Oxide Film Thickness and Interfacial Sliding on the Electrical Contact Resistance of Aluminium
,”
Mater. Sci. Eng., A
0921-5093,
242
, pp.
121
128
.
13.
Kong
,
C. Y.
,
Soar
,
R. C.
, and
Dickens
,
P. M.
, 2005, “
A Model for Weld Strength in Ultrasonic Consolidated Components
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
0954-4062,
219
(
1
), pp.
83
92
.
14.
Langenecker
,
B.
, 1966, “
Effect of Ultrasound on Deformation Characteristics of Metals
,”
IEEE Trans. Sonics Ultrason.
,
13s
(
1
), pp.
1
8
. 0018-9537
15.
Blaha
,
F.
, and
Langenecher
,
B.
, 1959, “
Ultrasonic Investigation of the Plasticity of Metal Crystals
,”
Acta Metall.
0001-6160,
7
(
2
), pp.
93
100
.
16.
Gunduz
,
I. E.
,
Ando
,
T.
,
Shattuck
,
E.
,
Wong
,
P. Y.
, and
Doumanidis
,
C. C.
, 2005, “
Enhanced Diffusion and Phase Transformations During Ultrasonic Welding of Zinc and Aluminum
,”
Scr. Mater.
,
52
(
9
), pp.
939
943
. 1359-6462
You do not currently have access to this content.