Effect of fiber volume fraction on occurrence, morphology, and spatial distribution of microvoids in resin transfer molded E-glass/epoxy composites is investigated. Three disk-shaped center-gated composite parts containing 8, 12, and 16 layers of randomly-oriented, E-glass fiber perform are molded, yielding 13.5%, 20.5%, and 27.5% fiber volume fractions. Voids are evaluated by microscopic image analysis of the samples obtained along the radius of these disk-shaped composites. The number of voids is found to decrease moderately with increasing fiber content. Void areal density decreased from 10.5voids/mm2 to 9.5voids/mm2 as fiber content is increased from 13.5% to 27.5%. Similarly, void volume fraction decreased from 3.1% to 2.5%. Increasing fiber volume fraction from 13.5% to 27.5% is found to lower the contribution of irregularly-shaped voids from 40% of total voids down to 22.4%. Along the radial direction, combined effects of void formation by mechanical entrapment and void mobility are shown to yield a spatially complex void distribution. However, increasing fiber content is observed to affect the void formation mechanisms as more voids are able to move toward the exit vents during molding. These findings are believed to be applicable not only to resin transfer molding but generally to liquid composite molding processes.

1.
Brouwer
,
W. D.
,
Van Herpt
,
E. C. F. C.
, and
Labordus
,
M.
, 2003, “
Vacuum Injection Moulding for Large Structural Applications
,”
Composites, Part A
1359-835X,
34
, pp.
551
558
.
2.
Abraham
,
D.
, and
Mcllhagger
,
R.
, 1998, “
Investigation Into Various Methods of Liquid Injection to Achieve Mouldings With Minimum Void Content and Full Wet Out
,”
Composites, Part A
1359-835X,
29
, pp.
533
539
.
3.
Abraham
,
D.
,
Matthews
,
S.
, and
Mcllhagger
,
R.
, 1998, “
A Comparison of Physical Properties of Glass Fiber Epoxy Composites Produced by Wet Lay-Up With Autoclave Consolidation and Resin Transfer Moulding
,”
Composites, Part A
1359-835X,
29
, pp.
795
801
.
4.
Johnson
,
C. F.
, 1990,
Composite Materials Technology: Process and Properties
,
Hanser, New York
, Chap. 5.
5.
Robertson
,
F. C.
, 1988, “
Resin Transfer Molding of Aerospace Resins - A Review
,”
Br. Polym. J.
0007-1641,
20
, pp.
417
429
.
6.
Judd
,
N. C. W.
, and
Wright
,
W. W.
, 1978, “
Voids and Their Effects on the Mechanical Properties of Composites—An Appraisal
,”
SAMPE J.
0091-1062,
14
, pp.
10
14
.
7.
Olivero
,
K. A.
,
Barraza
,
H. J.
,
O’Rear
,
E. A.
, and
Altan
,
M. C.
, 2002, “
Effect of Injection Rate and Post-Fill Cure Pressure on Resin Transfer Molded Disks
,”
J. Compos. Mater.
0021-9983,
36
, pp.
2011
2028
.
8.
Pearce
,
N.
,
Guild
,
F.
, and
Summerscales
,
J.
, 1998, “
A Study of the Effects of Convergent Flow Fronts on the Properties of Fiber Reinforced Composites Produced by Resin Transfer Molding
,”
Composites, Part A
1359-835X,
29
, pp.
141
152
.
9.
Wisnom
,
M. R.
,
Reynolds
,
T.
, and
Gwilliam
,
N.
, 1996, “
Reduction in Interlaminar Shear Strength by Discrete and Distributed Voids
,”
Compos. Sci. Technol.
0266-3538,
56
, pp.
93
101
.
10.
Bowles
,
K. J.
, and
Frimpong
,
S.
, 1992, “
Void Effects on the Interlaminar Shear-Strength of Unidirectional Graphite-Fiber-Reinforced Composites
,”
J. Compos. Mater.
0021-9983,
26
, pp.
1487
1509
.
11.
Harper
,
B. D.
,
Staab
,
G. H.
, and
Chen
,
R. S.
, 1987, “
A Note on the Effect of Voids Upon the Hygral and Mechanical Properties of AS4/3502 Graphite/Epoxy
,”
J. Compos. Mater.
0021-9983,
21
, pp.
280
289
.
12.
Mahale
,
A. D.
,
Prud’Homme
,
R. K.
, and
Rebenfeld
,
L.
, 1992, “
Quantitative Measurement of Voids Formed During Liquid Impregnation of Nonwoven Multifilament Glass Networks Using an Optical Visualization Technique
,”
Polym. Eng. Sci.
0032-3888,
32
, pp.
319
326
.
13.
Patel
,
N.
, and
Lee
,
L. J.
, 1995, “
Effect of Fiber Mat Architecture on Void Formation and Removal in Liquid Composite Molding
,”
Polym. Compos.
0272-8397,
16
(
5
), pp.
386
399
.
14.
Patel
,
N.
,
Rohatgi
,
V.
, and
Lee
,
J. L.
, 1995, “
Micro Scale Flow Behavior and Void Formation Mechanism During Impregnation Through a Unidirectional Stitched Fiberglass Mat
,”
Polym. Eng. Sci.
0032-3888,
35
, pp.
837
851
.
15.
Patel
,
N.
, and
Lee
,
J. L.
, 1996, “
Modeling of Void Formation and Removal in Liquid Composite Molding. Part I: Wettability Analysis
,”
Polym. Compos.
0272-8397,
17
, pp.
96
103
.
16.
Rohatgi
,
V.
,
Patel
,
N.
, and
Lee
,
J. L.
, 1996, “
Experimental Investigation of Flow Induced Microvoids During Impregnation of Unidirectional Stitched Fiberglass Mat
,”
Polym. Compos.
0272-8397,
17
, pp.
161
170
.
17.
Lundström
,
T. S.
, and
Gebart
,
B. R.
, 1994, “
Influence From Process Parameters on Void Formation in Resin Transfer Molding
,”
Polym. Compos.
0272-8397,
15
, pp.
25
33
.
18.
Lee
,
C. -L.
, and
Wei
,
K. -H.
, 2000, “
Resin Transfer Molding Process (RTM) of a High Performance Epoxy Resin. II: Effects of Process Variables on the Physical, Static and Dynamic Mechanical Behavior
,”
Polym. Eng. Sci.
0032-3888,
40
, pp.
935
943
.
19.
Darcy
,
H. P. G.
, 1856,
Les Fontaines Publiques de la Ville de Dijon
,
Delmont
,
Paris
, p.
306
.
20.
Olivero
,
K. A.
,
Hamidi
,
Y. K.
,
Aktas
,
L.
, and
Altan
,
M. C.
, 2004, “
Effect of Preform Thickness and Volume Fraction on Injection Pressure and Mechanical Properties of Resin Transfer Molded Composites
,”
J. Compos. Mater.
0021-9983,
38
, pp.
937
958
.
21.
Han
,
K.
,
Lee
,
L. J.
,
Nakamura
,
S.
,
Shafi
,
A.
, and
White
,
D.
, 1996, “
Dry Spot Formation and Changes in Liquid Composite Molding: II Modeling and Simulation
,”
J. Compos. Mater.
0021-9983,
30
, pp.
1475
1493
.
22.
Kang
,
M. K.
,
Lee
,
W. I.
, and
Hahn
,
H. T.
, 2000, “
Formation of Microvoids During Resin-Transfer Molding Process
,”
Compos. Sci. Technol.
0266-3538,
60
, pp.
2427
2434
.
23.
Hamidi
,
Y. K.
,
Aktas
,
L.
, and
Altan
,
M. C.
, 2005, “
Three-Dimensional Features of Void Morphology in Resin Transfer Molded Composites
,”
Compos. Sci. Technol.
0266-3538,
65
, pp.
1306
1320
.
24.
Hamidi
,
Y. K.
,
Aktas
,
L.
, and
Altan
,
M. C.
, 2004, “
Formation of Microscopic Voids in Resin Transfer Molded Composites
,”
ASME J. Eng. Mater. Technol.
0094-4289,
126
, pp.
420
426
.
25.
Barraza
,
H. J.
,
Hamidi
,
Y. K.
,
Aktas
,
L.
,
O’Rear
,
E. A.
, and
Altan
,
M. C.
, 2004, “
Porosity Reduction in the High-Speed Processing of Glass Fiber Composites by Resin Transfer Molding (RTM)
,”
J. Compos. Mater.
0021-9983,
38
, pp.
195
226
.
26.
Hamidi
,
Y. K.
, and
Altan
,
M. C.
, 2003, “
Spatial Variation of Void Morphology in Resin Transfer Molded E-Glass/Epoxy Composites
,”
J. Mater. Sci. Lett.
,
22
, pp.
1813
1816
. 0261-8028
27.
Breard
,
J.
,
Saouab
,
A.
, and
Bouquet
,
G.
, 2003, “
Numerical Simulation of Void Formation in LCM
,”
Composites, Part A
1359-835X,
34
, pp.
517
523
.
28.
Binetruy
,
C.
,
Hilaire
,
B.
, and
Pabiot
,
J.
, 1998, “
Tow Impregnation Model and Void Formation Mechanisms During RTM
,”
J. Compos. Mater.
0021-9983,
32
, pp.
223
245
.
29.
Chang
,
C. -Y.
, and
Hourng
,
L. -W.
, 1998, “
Study on Void Formation in Resin Transfer Molding
,”
Polym. Eng. Sci.
0032-3888,
38
, pp.
809
818
.
30.
Thomas
,
M. M.
,
Joseph
,
B.
, and
Kardos
,
J. L.
, 1997, “
Experimental Characterization of Autoclave-Cured Glass-Epoxy Composite Laminates: Cure Cycle Effects Upon Thickness, Void Content and Related Phenomena
,”
Polym. Compos.
0272-8397,
18
, pp.
283
299
.
31.
Chan
,
A. W.
, and
Morgan
,
R. J.
, 1992, “
Modeling Preform Impregnation and Void Formation in Resin Transfer Molding of Unidirectional Composites
,”
Polym. Compos.
0272-8397,
23
, pp.
48
52
.
32.
Lundstrom
,
T. S.
,
Gebart
,
B. R.
, and
Lundemo
,
C. Y.
, 1993, “
Void Formation in RTM
,”
J. Reinf. Plast. Compos.
0731-6844,
12
, pp.
1339
1349
.
33.
Rajulu
,
A. V.
,
Chary
,
K. N.
,
Reddy
,
G. R.
, and
Meng
,
Y. Z.
, 2004, “
Void Content, Density and Weight Reduction Studies on Short Bamboo Fiber-Epoxy Composites
,”
J. Reinf. Plast. Compos.
0731-6844,
23
, pp.
127
30
.
34.
Stabler
,
W. R.
,
Tatterson
,
G. B.
,
Sadler
,
R. L.
, and
El-Shiekh
,
A. H. M.
, 1992, “
Void Minimization in the Manufacture of Carbon Fiber Composites by Resin Transfer Molding
,”
Science and Engineering of Composite Materials
,
23
, pp.
38
42
.
35.
Ghiorse
,
S. R.
, 1991, “
A Comparison of Void Measurement Methods for Carbon/Epoxy Composites
,”
U.S. Army Materials Technology Laboratory
, Report No. MTL TR 91-13.
36.
Santulli
,
C.
,
Garcia Gil
,
R.
,
Long
,
A. C.
, and
Clifford
,
M. J.
, 2002, “
Void Content Measurements in Thermoplastic Composite Materials Through Image Analysis From Optical Micrographs
,”
Science and Engineering of Composite Materials
,
10
, pp.
77
90
.
37.
Shih
,
C. -H.
, 2000, “
Liquid Composite Molding of Tackified Fiber Reinforcement: Preforming and Void Removal
,” Ph.D. thesis, Ohio State University, Columbus, OH.
38.
Shi
,
D.
, and
Winslow
,
D.
, 1990, “
Accuracy of a Volume Fraction Measurement Using Areal Image Analysis
,”
J. Test. Eval.
,
19
(
3
), pp.
210
213
. 0090-3973
39.
Merle
,
G.
,
Allemand
,
J.
,
Camino
,
G.
,
Luda
,
M. P.
,
Revellino
,
M.
, and
Blancon
,
R.
, 1998, “
Morphology Analysis of Microvoids in SMC: Aging Effects
,”
Composites, Part A
,
29
, pp.
1535
1543
. 0090-3973
40.
Howe
,
C. A.
,
Paton
,
R. J.
, and
Goodwin
,
A. A.
, 1997, “
A Comparison Between Voids in RTM and Prepreg Carbon/Epoxy Laminates
,”
Proceedings of ICCM-11
,
M. L.
Scott
, ed., Australian Composite Structures Society, Vol.
IV
, pp.
46
51
.
41.
Goodwin
,
A. A.
,
Howe
,
C. A.
, and
Paton
,
R. J.
, 1997, “
The Role of Voids in Reducing the Interlaminar Shear Strength in RTM Laminates
,”
Proceedings of ICCM-11
,
M. L.
Scott
, ed., Australian Composite Structures Society, Vol.
IV
, pp.
11
19
.
You do not currently have access to this content.