The present study is concerned with the use of the modified Manson–Coffin curve method to estimate the lifetime of notched components subjected to multiaxial cyclic loading. The above criterion postulates that fatigue strength under complex loading paths can efficiently be evaluated in terms of maximum shear strain amplitude, provided that the reference Manson–Coffin curve used to predict the number of cycles to failure is defined by taking into account the actual degree of multiaxiality/nonproportionality of the stress/strain state damaging the assumed crack initiation site. The accuracy and reliability of the above fatigue life estimation technique was checked by considering about 300 experimental results taken from the literature. Such data were generated by testing notched cylindrical samples made of four different metallic materials and subjected to in-phase and out-of-phase biaxial nominal loading. The accuracy of our criterion in taking into account the presence of nonzero mean stresses was also investigated in depth. To calculate the stress/strain quantities needed for the in-field use of the modified Manson–Coffin curve method, notch root stresses and strains were estimated by using not only the well-known analytical tool due to Köttgen et al. (1995, “Pseudo Stress and Pseudo Strain Based Approaches to Multiaxial Notch Analysis,” Fatigue Fract. Eng. Mater. Struct., 18(9), pp. 981–1006) (applied along with the ratchetting plasticity model devised by Jiang and Sehitoglu (1996, “Modelling of Cyclic Ratchetting Plasticity, Part I: Development and Constitutive Relations. Transactions of the ASME,” ASME J. Appl. Mech., 63, pp. 720–725; 1996, “Modelling of Cyclic Ratchetting Plasticity, Part I: Development and Constitutive Relations,” Trans. ASME J. Appl. Mech., 63, pp. 720–725)) but also by taking full advantage of the finite element method to perform some calibration analyses. The systematic use of our approach was seen to result in estimates falling within an error factor of about 3.

1.
Neuber
,
H.
, 1958,
Theory of Notch Stresses: Principles for Exact Calculation of Strength With Reference to Structural Form and Material
, 2nd ed.,
Springer
,
Berlin
.
2.
Peterson
,
R. E.
, 1959, “
Notch Sensitivity
,”
Metal Fatigue
,
G.
Sines
and
J. L.
Waisman
, eds.,
McGraw-Hill
,
New York
, pp.
293
306
.
3.
Smith
,
R. A.
, and
Miller
,
K. J.
, 1978, “
Prediction of Fatigue Regimes in Notched Components
,”
Int. J. Mech. Sci.
0020-7403,
20
, pp.
201
206
.
4.
Lukas
,
P.
,
Kunz
,
L.
,
Weiss
,
B.
, and
Stickler
,
R.
, 1986, “
Non-Damaging Notches in Fatigue
,”
Fatigue Fract. Eng. Mater. Struct.
8756-758X,
9
, pp.
195
204
.
5.
Lazzarin
,
P.
,
Tovo
,
R.
, and
Meneghetti
,
G.
, 1997, “
Fatigue Crack Initiation and Propagation Phases Near Notches in Metals With Low Notch Sensitivity
,”
Int. J. Fatigue
0142-1123,
19
, pp.
647
657
.
6.
Taylor
,
D.
, 1999, “
Geometrical Effects in Fatigue: A Unifying Theoretical Model
,”
Int. J. Fatigue
0142-1123,
21
, pp.
413
420
.
7.
Atzori
,
B.
,
Lazzarin
,
P.
, and
Meneghetti
,
G.
, 2003, “
Fracture Mechanics and Notch Sensitivity
,”
Fatigue Fract. Eng. Mater. Struct.
8756-758X,
26
, pp.
257
267
.
8.
Gough
,
H. J.
, 1949, “
Engineering Steels Under Combined Cyclic and Static Stresses
,”
Proc. Inst. Mech. Eng.
0020-3483,
160
, pp.
417
440
.
9.
Matake
,
T.
, and
Imai
,
Y.
, 1980, “
Fatigue Strength of Notched Specimen Under Combined Stress
,”
Bull. JSME
,
23
(
179
), pp.
623
629
. 0021-3764
10.
Tipton
,
S. M.
, and
Nelson
,
D. V.
, 1985, “
Fatigue Life Predictions for a Notched Shaft in Combined Bending and Torsion
,”
ASTM Spec. Tech. Publ.
0066-0558
853
, pp.
514
550
.
11.
Tipton
,
S. M.
, and
Nelson
,
D. V.
, 1997, “
Advances in Multiaxial Life Prediction for Components With Stress Concentrator
,”
Int. J. Fatigue
0142-1123,
19
, pp.
503
515
.
12.
Susmel
,
L.
, and
Taylor
,
D.
, 2003, “
Two Methods for Predicting the Multiaxial Fatigue Limits of Sharp Notches
,”
Fatigue Fract. Eng. Mater. Struct.
8756-758X,
26
, pp.
821
833
.
13.
Susmel
,
L.
, 2004, “
A Unifying Approach to Estimate the High-Cycle Fatigue Strength of Notched Components Subjected to Both Uniaxial and Multiaxial Cyclic Loadings
,”
Fatigue Fract. Eng. Mater. Struct.
8756-758X,
27
, pp.
391
411
.
14.
Dowling
,
N. E.
, 1993,
Mechanical Behaviour of Materials
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
15.
Bentachfine
,
S.
,
Pluvinage
,
G.
,
Gilgert
,
J.
,
Azari
,
Z.
, and
Bouami
,
D.
, 1999, “
Notch Effect in Low Cycle Fatigue
,”
Int. J. Fatigue
0142-1123,
21
, pp.
421
430
.
16.
Fatemi
,
A.
,
Zeng
,
Z.
, and
Plaseied
,
A.
, 2004, “
Fatigue Behaviour and Life Predictions of Notched Specimens Made of QT and Forged Microalloyed Steels
,”
Int. J. Fatigue
0142-1123,
26
, pp.
663
672
.
17.
Neuber
,
H.
, 1961, “
Theory of Stress Concentration for Shear-Strained Prismatical Bodies With Arbitrary Nonlinear Stress-Strain Law
,”
ASME Trans. J. Appl. Mech.
,
28
, pp.
544
50
. 0021-8936
18.
Seeger
,
T.
, and
Heuler
,
P.
, 1980, “
Generalized Application of Neuber’s Rule
,”
J. Test. Eval.
,
8
(
4
), pp.
199
204
. 0090-3973
19.
Glinka
,
G.
, 1985, “
Energy Density Approach to Calculation of Inelastic Strain-Stress Near Notches and Cracks
,”
Eng. Fract. Mech.
0013-7944,
22
, pp.
485
508
.
20.
Shatil
,
G.
,
Ellison
,
E. G.
, and
Smith
,
D. J.
, 1995, “
Elastic-Plastic Behaviour and Uniaxial Low Cycle Fatigue Life of Notched Specimens
,”
Fatigue Fract. Eng. Mater. Struct.
8756-758X,
18
, pp.
235
245
.
21.
Zeng
,
Z.
, and
Fatemi
,
A.
, 2001, “
Elasto-Plastic Stress and Strain Behavior at Notch Roots Under Monotonic and Cyclic Loadings
,”
J. Strain Anal. Eng. Des.
0309-3247,
36
, pp.
287
300
.
22.
Hoffmann
,
M.
, and
Seeger
,
T.
, 1985, “
A Generalised Method for Estimating Multiaxial Elastic-Plastic Notch Stresses and Strains. Part 1: Theory
,”
ASME J. Eng. Mater. Technol.
,
107
, pp.
250
254
. 0094-4289
23.
Hoffmann
,
M.
, and
Seeger
,
T.
, 1985, “
A Generalised Method for Estimating Multiaxial Elastic-Plastic Notch Stresses and Strains. Part 2: Application and General Discussion
,”
ASME J. Eng. Mater. Technol.
,
107
, pp.
255
260
. 0094-4289
24.
Hoffmann
,
M.
, and
Seeger
,
T.
, 1989, “
Stress-Strain Analysis and Life Prediction of a Notched Shaft Under Multiaxial Loading
,”
Multiaxial Fatigue—Analysis and Experiments
,
G. E.
Leese
and
D. F.
Socie
, eds.,
SAE
,
Warrendale, PA
, pp.
81
100
.
25.
Barkey
,
M. E.
,
Socie
,
D. F.
, and
Hsia
,
K. J.
, 1994, “
A Yield Surface Approach to the Estimation of Notch Strains for Proportional and Non-Proportional Cyclic Loading
,”
ASME J. Eng. Mater. Technol.
0094-4289,
119
, pp.
104
112
.
26.
Köttgen
,
V. B.
,
Barkey
,
M. E.
, and
Socie
,
D. F.
, 1995, “
Pseudo Stress and Pseudo Strain Based Approaches to Multiaxial Notch Analysis
,”
Fatigue Fract. Eng. Mater. Struct.
8756-758X,
18
(
9
), pp.
981
1006
.
27.
Fash
,
J. W.
,
Socie
,
D. F.
, and
McDowell
,
D. L.
, 1985, “
Fatigue Life Estimates for a Simple Notched Component Under Biaxial Loading
,”
ASTM Spec. Tech. Publ.
0066-0558
853
, pp.
497
513
.
28.
Brown
,
M. W.
, and
Miller
,
K. J.
, 1973, “
A Theory for Fatigue Under Multiaxial Stress-Strain Conditions
,”
Proc. Inst. Mech. Eng.
0020-3483
187
, pp.
745
755
.
29.
Hoffmann
,
M.
, and
Seeger
,
T.
, 1989, “
Stress-Strain Analysis and Life Predictions of a Notched Shaft Under Multiaxial Loading
,”
Multiaxial Fatigue—Analysis and Experiments
,
G. E.
Leese
and
D. F.
Socie
, eds.,
SAE
,
Warrendale, PA
, pp.
81
96
.
30.
Yip
,
M. C.
, and
Jen
,
Y. M.
, 1996, “
Biaxial Fatigue Crack Initiation Life Prediction of Solid Cylindrical Specimens With Transverse Circular Holes
,”
Int. J. Fatigue
0142-1123,
18
, pp.
111
117
.
31.
Yip
,
M. C.
, and
Jen
,
Y. M.
, 1997, “
Mean Stress Effect on Crack Initiation Lives for Notched Specimen Under Biaxial Non-Proportional Loading Path
,”
ASME J. Eng. Mater. Technol.
0094-4289,
119
, pp.
104
112
.
32.
Fatemi
,
A.
, and
Socie
,
D. F.
, 1988, “
A Critical Plane Approach to Multiaxial Fatigue Damage Including Out-of-Phase Loading
,”
Fatigue Fract. Eng. Mater. Struct.
8756-758X,
11
, pp.
149
166
.
33.
Susmel
,
L.
,
Meneghetti
,
G.
, and
Atzori
,
B.
, 2009, “
A Simple and Efficient Reformulation of the Classical Manson–Coffin Curve to Predict Lifetime Under Multiaxial Fatigue Loading—Part I: Plain Materials
,”
ASME J. Eng. Mater. Technol.
0094-4289
131
(
2
), p.
021009
.
34.
Morrow
,
J. D.
, 1965, “
Cyclic Plastic Strain Energy and Fatigue of Metals
,”
ASTM Spec. Tech. Publ.
0066-0558
378
, pp.
45
84
.
35.
Papadopoulos
,
I. V.
, 1998, “
Critical Plane Approaches in High-Cycle Fatigue: On the Definition of the Amplitude and Mean Value of the Shear Stress Acting on the Critical Plane
,”
Fatigue Fract. Eng. Mater. Struct.
8756-758X,
21
, pp.
269
285
.
36.
Socie
,
D. F.
, and
Marquis
,
G. B.
, 2000,
Multiaxial Fatigue
,
SAE
,
Warrendale, PA
.
37.
Hoffmeyer
,
J.
,
Döring
,
R.
,
Seeger
,
T.
, and
Vormwald
,
M.
, 2006, “
Deformation Behaviour, Short Crack Growth and Fatigue Lives Under Multiaxial Nonproportional Loading
,”
Int. J. Fatigue
0142-1123,
28
, pp.
508
520
.
38.
Kurath
,
P.
,
Downing
,
S. D.
, and
Galliart
,
D. R.
, 1989, “
Summary of Non-Hardened Notched Shaft-Round Robin Program
,”
Multiaxial Fatigue—Analysis and Experiments
,
G. E.
Leese
and
D. F.
Socie
, eds.,
SAE
,
Warrendale, PA
, pp.
13
32
.
39.
Atzori
,
B.
,
Berto
,
F.
,
Lazzarin
,
P.
, and
Quaresimin
,
M.
, 2006, “
Multi-Axial Fatigue Behaviour of a Severely Notched Carbon Steel
,”
Int. J. Fatigue
0142-1123,
28
, pp.
485
493
.
40.
Jiang
,
Y.
, and
Sehitoglu
,
H.
, 1996, “
Modelling of Cyclic Ratchetting Plasticity, Part I: Development and Constitutive Relations
,”
Trans. ASME, J. Appl. Mech.
0021-8936,
63
, pp.
720
725
.
41.
Jiang
,
Y.
, and
Sehitoglu
,
H.
, 1996, “
Modelling of Cyclic Ratchetting Plasticity, Part II: Comparison of Model Simulations With Experiments
,”
Trans. ASME, J. Appl. Mech.
0021-8936,
63
, pp.
726
733
.
42.
Susmel
,
L.
, and
Taylor
,
D.
, 2008, “
The Modified Wöhler Curve Method Applied Along With the Theory of Critical Distances to Estimate Finite Life of Notched Components Subjected to Complex Multiaxial Loading Paths
,”
Fatigue Fract. Eng. Mater. Struct.
8756-758X,
31
, pp.
1047
1064
.
43.
Lemaitre
,
J.
, and
Chaboche
,
J. L.
, 1990,
Mechanics of Solid Materials
,
Cambridge University Press
,
Cambridge, UK
.
44.
Eleiche
,
A. M.
,
Megahed
,
M. M.
, and
Abd-Allah
,
N. M.
, 2006, “
Low-Cycle Fatigue in Rotating Cantilever Under Bending. III: Experimental Investigations on Notched Specimens
,”
Int. J. Fatigue
0142-1123,
28
, pp.
271
280
.
45.
Qilafku
,
G.
,
Kadi
,
N.
,
Dobranski
,
J.
,
Azari
,
Z.
,
Gjonaj
,
M.
, and
Pluvinage
,
G.
, 2001, “
Fatigue Specimens Subjected to Combined Loading. Role of Hydrostatic Pressure
,”
Int. J. Fatigue
0142-1123,
23
, pp.
689
701
.
46.
Taylor
,
D.
, 2007,
The Theory of Critical Distances: A New Perspective in Fracture Mechanics
,
Elsevier
,
New York
.
You do not currently have access to this content.