This paper summarizes an attempt to devise an engineering method suitable for predicting fatigue lifetime of metallic materials subjected to both proportional and nonproportional multiaxial cyclic loadings. The proposed approach takes as a starting point the assumption that the plane experiencing the maximum shear strain amplitude (the so-called “critical plane”) is coincident with the micro-/mesocrack initiation plane. In order to correctly account for the presence of both nonzero mean stresses and nonzero out-of-phase angles, the degree of multiaxiality/nonproportionality of the stress state damaging crack initiation sites is suggested here to be evaluated in terms of the ratio between maximum normal stress and shear stress amplitude relative to the critical plane. Such a ratio is used then to define nonconventional Manson–Coffin curves, whose calibration is done through two strain-life curves generated under fully reversed uniaxial and fully reversed torsional fatigue loadings, respectively. The accuracy and reliability of our approach were systematically checked by using approximately 350 experimental data taken from the technical literature and generated by testing 13 different materials under both in-phase and out-of-phase loadings. Moreover, the accuracy of our criterion in estimating lifetime in the presence of nonzero mean stresses was also investigated. Such an extensive validation exercise allowed us to prove that the fatigue life estimation technique formalized in the present paper is a reliable tool capable of correctly evaluating fatigue damage in engineering materials subjected to multiaxial cyclic loading paths.

1.
You
,
B. R.
, and
Lee
,
S. B.
, 1996, “
A Critical Review on Multiaxial Fatigue Assessments of Metals
,”
Int. J. Fatigue
0142-1123,
18
, pp.
235
244
.
2.
Socie
,
D. F.
, and
Marquis
,
G. B.
, 2000,
Multiaxial Fatigue
,
SAE
,
Warrendale, PA
.
3.
Susmel
,
L.
, and
Tovo
,
R.
, 2003, “
A Quantitative Comparison Among Multiaxial Fatigue Criteria for Low Cycle Fatigue
,”
International Conference on LCF 2003
,
P. D.
Portella
,
H.
Sehitoglu
,
K.
Hatanaka
, eds., Berlin, Germany, Sept., pp.
283
288
.
4.
Papadopoulos
,
I. V.
,
Davoli
,
P.
,
Gorla
,
C.
,
Filippini
,
M.
, and
Bernasconi
,
A.
, 1997, “
A Comparative Study of Multiaxial High-Cycle Fatigue Criteria for Metals
,”
Int. J. Fatigue
0142-1123,
19
, pp.
219
235
.
5.
Brown
,
M. W.
, and
Miller
,
K. J.
, 1973, “
A Theory for Fatigue Under Multiaxial Stress-Strain Conditions
,”
Proc. Inst. Mech. Eng.
0020-3483,
187
, pp.
745
755
.
6.
Kanazawa
,
K.
,
Miller
,
K. J.
, and
Brown
,
M. W.
, 1977, “
Low-Cycle Fatigue Under Out-of-Phase Loading Conditions
,”
ASME J. Eng. Mater. Technol.
0094-4289,
99
, pp.
222
228
.
7.
Wang
,
C. H.
, and
Brown
,
M. W.
, 1993, “
A Path-Independent Parameter for Fatigue Under Proportional and Non-Proportional Loading
,”
Fatigue Fract. Eng. Mater. Struct.
8756-758X,
16
, pp.
1285
1298
.
8.
Socie
,
D. F.
, 1987, “
Multiaxial Fatigue Damage Models
,”
ASME J. Eng. Mater. Technol.
0094-4289,
109
, pp.
293
298
.
9.
Fatemi
,
A.
, and
Socie
,
D. F.
, 1988, “
A Critical Plane Approach to Multiaxial Fatigue Damage Including Out-of-Phase Loading
,”
Fatigue Fract. Eng. Mater. Struct.
8756-758X,
11
, pp.
149
166
.
10.
Smith
,
K. N.
,
Watson
,
P.
, and
Topper
,
T. H.
, 1970, “
A Stress-Strain Function for the Fatigue of Metals
,”
J. Mater.
0022-2453,
5
, pp.
767
778
.
11.
Garud
,
Y. S.
, 1981, “
A New Approach to the Evaluation of Fatigue Under Multiaxial Loadings
,”
ASME J. Eng. Mater. Technol.
,
103
, pp.
119
125
. 0094-4289
12.
Ellyin
,
F.
, 1989, “
Cyclic Strain Energy Density as a Criterion for Multiaxial Fatigue Failure
,”
Biaxial and Multiaxial Fatigue
, EGF 3,
Mechanical Engineering
,
London
, pp.
571
583
.
13.
Ellyin
,
F.
,
Golos
,
K.
, and
Xia
,
Z.
, 1991, “
In-Phase and Out-of-Phase Multiaxial Fatigue
,”
ASME J. Eng. Mater. Technol.
0094-4289,
113
, pp.
112
118
.
14.
Ellyin
,
F.
, and
Xia
,
Z.
, 1993, “
A General Fatigue Theory and Its Application to Out-of-Phase Cyclic Loading
,”
ASME J. Eng. Mater. Technol.
0094-4289,
115
, pp.
411
416
.
15.
Susmel
,
L.
, and
Lazzarin
,
P.
, 2002, “
A Bi-Parametric Modified Wöhler Curve for High Cycle Multiaxial Fatigue Assessment
,”
Fatigue Fract. Eng. Mater. Struct.
8756-758X,
25
, pp.
63
78
.
16.
Lazzarin
,
P.
, and
Susmel
,
L.
, 2003, “
A Stress-Based Method to Predict Lifetime Under Multiaxial Fatigue Loadings
,”
Fatigue Fract. Eng. Mater. Struct.
8756-758X,
26
, pp.
1171
1187
.
17.
Susmel
,
L.
, 2008, “
Multiaxial Fatigue Limits and Material Sensitivity to Non-Zero Mean Stresses Normal to the Critical Planes
,”
Fatigue Fract. Eng. Mater. Struct.
8756-758X,
31
, pp.
295
309
.
18.
Papadopoulos
,
I. V.
, 1998, “
Critical Plane Approaches in High-Cycle Fatigue: On the Definition of the Amplitude and Mean Value of the Shear Stress Acting on the Critical Plane
,”
Fatigue Fract. Eng. Mater. Struct.
8756-758X,
21
, pp.
269
285
.
19.
Susmel
,
L.
, and
Petrone
,
N.
, 2003, “
Multiaxial Fatigue Life Estimations for 6082–T6 Cylindrical Specimens Under In-Phase and Out-of-Phase Biaxial Loadings
,”
Biaxial and Multiaxial Fatigue and Fracture
,
A.
Carpinteri
,
M.
de Freitas
, and
A.
Spagnoli
, eds.,
ESIS-Elsevier
,
Oxford, UK
, pp.
83
104
.
20.
Taylor
,
D.
, 1999, “
Geometrical Effects in Fatigue: A Unifying Theoretical Model
,”
Int. J. Fatigue
0142-1123,
21
, pp.
413
420
.
21.
Susmel
,
L.
, and
Taylor
,
D.
, 2003, “
Two Methods for Predicting the Multiaxial Fatigue Limits of Sharp Notches
,”
Fatigue Fract. Eng. Mater. Struct.
8756-758X,
26
, pp.
821
833
.
22.
Susmel
,
L.
, 2004, “
A Unifying Approach to Estimate the High-Cycle Fatigue Strength of Notched Components Subjected to Both Uniaxial and Multiaxial Cyclic Loadings
,”
Fatigue Fract. Eng. Mater. Struct.
8756-758X,
27
, pp.
391
411
.
23.
Basquin
,
O. H.
, 1910, “
The Exponential Law of Endurance Tests
,”
Proceedings of American Society for Testing and Materials
, Vol.
10
, pp.
625
630
.
24.
Manson
,
S. S.
, 1954, “
Behaviour of Materials Under Conditions of Thermal Stress
,” National Advisory Committee for Aeronautics, Report No. NACA TN-2933.
25.
Coffin
,
L. F.
, 1954, “
A Study of the Effects of Cyclic Thermal Stresses on a Ductile Metal
,”
Trans. ASME
0097-6822,
76
, pp.
931
950
.
26.
Morrow
,
J. D.
, 1965, “
Cyclic Plastic Strain Energy and Fatigue of Metals
,”
Internal Friction, Damping and Cyclic Plasticity
, ASTM STP 378,
American Society for Testing and Materials
,
Philadelphia, PA
, pp.
45
84
.
27.
Zahavi
,
E.
, 1996,
Fatigue Design
,
CRC
,
Boca Raton, FL
.
28.
Socie
,
D. F.
,
Waill
,
L. A.
, and
Dittmer
,
D. F.
, 1985, “
Biaxial Fatigue of Inconel 718 Including Mean Stress Effects
,”
Multiaxial Fatigue
, ASTM STP 853,
K. J.
Miller
and
M. W.
Brown
, eds.,
American Society for Testing and Materials
,
Philadelphia, PA
, pp.
463
481
.
29.
Socie
,
D. F.
,
Kurath
,
P.
, and
Koch
,
J.
, 1989, “
A Multiaxial Fatigue Damage Parameter
,”
Biaxial and Multiaxial Fatigue
, EGF 3,
M. W.
Brown
and
K. J.
Miller
, eds.,
Mechanical Engineering
,
London
, pp.
535
550
.
30.
Hua
,
C. T.
, and
Socie
,
D. F.
, 1984, “
Fatigue Damage in 1045 Steel Under Constant Amplitude Biaxial Loading
,”
Fatigue Fract. Eng. Mater. Struct.
8756-758X,
7
, pp.
165
179
.
31.
Kurath
,
P.
,
Downing
,
S. D.
, and
Galliart
,
D. R.
, 1989, “
Summary of Non-Hardened Notched Shaft-Round Robin Program
,”
Multiaxial Fatigue—Analysis and Experiments
,
G. E.
Leese
and
D. F.
Socie
,
SAE
,
Warrendale, PA
, Vol.
AE-14
, pp.
13
32
.
32.
Kim
,
K. S.
,
Park
,
J. C.
, and
Lee
,
J. W.
, 1999, “
Multiaxial Fatigue Under Variable Amplitude Loads
,”
ASME J. Eng. Mater. Technol.
0094-4289,
121
, pp.
286
293
.
33.
Chen
,
X.
,
An
,
K.
, and
Kim
,
K. S.
, 2004, “
Low-Cycle Fatigue of 1Cr-18Ni-9Ti Stainless Steel and Related Weld Metal Under Axial, Torsional and 90° Out-of-Phase-Loading
,”
Fatigue Fract. Eng. Mater. Struct.
8756-758X,
27
, pp.
439
448
.
34.
Jiang
,
Y.
,
Hertel
,
O.
, and
Vormwald
,
M.
, 2007, “
An Experimental Evaluation of Three Critical Plane Multiaxial Fatigue Criteria
,”
Int. J. Fatigue
0142-1123,
29
, pp.
1490
1502
.
35.
Jayaraman
,
N.
, and
Ditmars
,
M. M.
, 1989, “
Torsional and Biaxial (Tension-Torsion) Fatigue Damage Mechanisms in Waspaloy at Room Temperature
,”
Int. J. Fatigue
0142-1123,
11
, pp.
309
318
.
36.
Nelson
,
D. V.
, and
Rostami
,
A.
, 1997, “
Biaxial Fatigue of A533B Pressure Vessel Steel
,”
ASME J. Pressure Vessel Technol.
0094-9930,
119
, pp.
325
331
.
37.
Petrone
,
N.
, 1996, “
Metodologie di progettazione a fatica per componenti soggetti a sollecitazioni pluriassiali
,” Ph.D. thesis, University of Padova, Italy.
38.
Shang
,
D. G.
,
Sun
,
G. Q.
, and
Yan
,
C. L.
, 2007, “
Multiaxial Fatigue Damage Parameter and Life Prediction for Medium-Carbon Steel Based on the Critical Plane Approach
,”
Int. J. Fatigue
0142-1123,
29
, pp.
2200
2207
.
39.
Lin
,
H.
,
Nayeb-Hashemi
,
H.
, and
Pelloux
,
R. M.
, 1992, “
Constitutive Relations and Fatigue Life Prediction for Anisotropic Al-6061–T6 Rods Under Biaxial Proportional Loadings
,”
Int. J. Fatigue
0142-1123,
14
, pp.
249
259
.
40.
Hoffmeyer
,
J.
,
Döring
,
R.
,
Seeger
,
T.
, and
Vormwald
,
M.
, 2006, “
Deformation Behaviour, Short Crack Growth and Fatigue Lives Under Multiaxial Nonproportional Loading
,”
Int. J. Fatigue
0142-1123,
28
, pp.
508
520
.
41.
Kim
,
K. S.
,
Chen
,
X.
,
Han
,
C.
, and
Lee
,
H. W.
, 2002, “
Estimations Methods for Fatigue Properties of Steels Under Axial and Torsional Loading
,”
Int. J. Fatigue
0142-1123,
24
, pp.
783
793
.
42.
Jiang
,
Y.
, and
Sehitoglu
,
H.
, 1996, “
Modelling of Cyclic Ratchetting Plasticity—Part I: Development and Constitutive Relations
,”
ASME Trans. J. Appl. Mech.
0021-8936,
63
, pp.
720
725
.
43.
Jiang
,
Y.
, and
Sehitoglu
,
H.
, 1996, “
Modelling of Cyclic Ratchetting Plasticity—Part II: Comparison of Model Simulations With Experiments
,”
ASME Trans. J. Appl. Mech.
0021-8936,
63
, pp.
726
733
.
44.
Tomkins
,
B.
, 1968, “
Fatigue Crack Propagation—An Analysis
,”
Philos. Mag.
0031-8086,
18
, pp.
1041
1066
.
45.
Miller
,
K. J.
, 1993, “
The Two Thresholds of Fatigue Behaviour
,”
Fatigue Fract. Eng. Mater. Struct.
8756-758X,
16
, pp.
931
939
.
46.
Murakami
,
Y.
, and
Miller
,
K. J.
, 2005, “
What Is Fatigue Damage? A View Point From the Observation of Low Cycle Fatigue Process
,”
Int. J. Fatigue
0142-1123,
27
, pp.
991
1005
.
47.
Lemaitre
,
J.
, and
Chaboche
,
J. L.
, 1990,
Mechanics of Solid Materials
,
Cambridge University Press
,
Cambridge
.
48.
Itoh
,
T.
,
Sakane
,
M.
,
Ohnami
,
M.
, and
Socie
,
D. F.
, 1995, “
Nonproportional Low Cycle Fatigue Criterion for Type 304 Stainless Steel
,”
ASME J. Eng. Mater. Technol.
0094-4289,
117
, pp.
285
292
.
You do not currently have access to this content.