This research paper describes a specifically constructed Variant A continuous dieless wire-drawing machine to experimentally determine the principal processing parameters for dieless wire drawing using extra low interstitial Ti–6Al–4V wire alloy. It was experimentally determined that the process was limited by the ratio of the ingoing and outgoing axial velocities, also known as the reduction ratio R and influenced by the primary drawing velocity V1. Reductions of up to 36% per pass wire in cross-sectional area (CSA) were achieved. However, a direct relationship between the wire diameter variation and an increase in overall achievable reduction in CSA was observed. The separation distance between the wire heating and cooling devices (S) was identified as one of the principal governing process parameters. It was found that processing in an inert gas environment led to an increased reduction on CSA of approximately 3% per pass when compared with processing in compressed air. This was attributed to a reduction in surface oxidation and stress cracking. The experimentally determined results showed excellent agreement with a proposed mathematical model. It was also determined that the calculated strain rate for the process fell within the boundaries of previously determined strain rates for this particular alloy. The successful operation of this experimental machine effectively illustrates the possible commercial validity of continuous dieless wire drawing.

1.
Weiss
,
V.
, and
Kot
,
R. A.
, 1969, “
Dieless Drawing With Transformational Plasticity
,”
Wire J.
0043-602X,
9
, pp.
182
189
.
2.
von Eynatten
,
K. G. H. F.
, 2004, “
Dieless Drawing
,”
Ein Massivunformverfahren Zur Flexiblen Einstellung Von Form, Gefuge und Mechanischen Eigenschaften Von Langprodukten
,
Eidgenossischen Technischen Hochschule Zurich
,
Zurich, Germany
.
3.
Gliga
,
M.
, and
Canta
,
T.
, 1999, “
Theory and Application of Dieless Drawing
,”
Wire Ind.
0043-6011,
6
, pp.
294
297
.
4.
Kot
,
R.
,
Krause
,
G.
, and
Weiss
,
V.
, 1968, “
Transformational Plasticity of Titanium
,”
The Science, Technology and Application of Titanium
,
Pergamon
,
London
.
5.
Johnson
,
W.
, and
Sowerby
,
R.
, 1969, “
The Mechanics of Wire Drawing
,”
Wire Ind.
,
4
, pp.
137
142
. 0002-7820
6.
Sekiguchi
,
H.
,
Kobatake
,
K.
, and
Osakada
,
K.
, 1975, “
A Fundamental Study on Dieless Drawing
,”
Proceedings of the 15th MTDR Conference
.
7.
Sekiguchi
,
H.
, and
Kobatake
,
K.
, 1978, “
Development of Dieless Drawing Process
,”
Proceedings of the 2nd International Conference on Technology of Plasticity
, Stuggart, p.
347
.
8.
Alexander
,
J. M.
, and
Turner
,
T. W.
, 1974, “
A Preliminary Investigation of the Dieless Drawing of Titanium and Some Steels
,”
Proceedings of the 15th MTDR Conference
.
9.
Kawaguchi
,
Y.
,
Katsube
,
K.
,
Murahashi
,
M.
, and
Yamada
,
Y.
, 1991, “
Applications of Dieless Drawing to Ti-Ni Wire Drawing and Tapered Steel Wire Manufacturing
,”
Wire J. Int.
0277-4275,
24
, pp.
53
58
.
10.
Pawelski
,
O.
, and
Kolling
,
A.
, 1995, “
Calculation of the Temperature Distribution in Dieless Drawing
,”
Steel Res.
,
66
(
2
), pp.
50
54
. 0177-4832
11.
Pawelski
,
O.
,
Rasp
,
W.
, and
Schmeisser
,
K.
, 1995, “
Dieless Drawing: A Forming Process Allowing Flexible Shape Generation
,”
Proceedings of the 31st MATDOR Conference
, Manchester.
12.
Fortunier
,
R.
,
Sassoulas
,
H.
, and
Montheillet
,
F.
, 1997, “
A Thermo-Mechanical Analysis of Stability in Dieless Drawing
,”
Int. J. Mech. Sci.
,
39
(
5
), pp.
615
627
. 0020-7403
13.
Tiernan
,
P.
, 1999, “
Machine Design, Testing and Analysis of Dieless Wire Drawing
,” Ph.D. thesis, University of Limerick, Limerick, Ireland.
14.
Tiernan
,
P.
, and
Hillery
,
M. T.
, 2004, “
Dieless Wire Drawing—An Experimental and Numerical Analysis
,”
J. Mater. Process. Technol.
0924-0136,
155–156
, pp.
1178
1183
.
15.
Yonggang
,
L.
,
Nathaniel
,
R.
, and
Aravinda
,
K.
, 2002, “
Dieless Laser Drawing of Fine Metal Wires
,”
J. Mater. Process. Technol.
0924-0136,
123
(
3
), pp.
451
458
.
16.
Yonggang
,
L.
,
Nathaniel
,
R.
,
Quick
,
R.
, and
Aravinda
,
K.
, 2003, “
Structural Evolution and Drawability in Laser Dieless Drawing of Fine Nickel Wires
,”
Mater. Sci. Eng., A
0921-5093,
358
, pp.
59
70
.
17.
Kaltenbrunner
,
M.
,
Liedl
,
G.
,
Kratky
,
A.
, and
Bielak
,
R.
, 2004, “
LAWD-Laser Assisted Wire Drawing
,”
Proceedings of the 4th Laser Assisted Net-Shape Engineering Conference
, Vienna, pp.
1175
1181
.
18.
Wang
,
K.
, 1996, “
The Use of Titanium for Medical Applications in the USA
,”
Mater. Sci. Eng., A
0921-5093,
213
, pp.
134
137
.
19.
Jahnke
,
L. P.
, 1968, “
Titanium in Jet Engines
,”
The Science, Technology and Application of Titanium
,
Pergamon
,
London
.
20.
Pilling
,
J.
, and
Ridley
,
N.
, 1989,
Superplasticity in Crystalline Solids
, Vol.
441
,
The Institute of Metals
,
London
.
21.
Naughton
,
M. D.
, and
Tiernan
,
P.
, 2007, “
Mechanical Behaviour and Superplastic Forming Capabilities of Extra Low Interstitial Grade Ti–6Al–4V Wire Alloy With Numerical Verification
,”
Proc. Inst. Mech. Eng., Part L
,
221
(
3
), pp.
165
175
.
22.
Langdon
,
T. G.
, 1982, “
The Mechanical Properties of Superplastic Materials
,”
Metall. Trans. A
0360-2133,
13A
, pp.
689
701
.
23.
Langdon
,
T. D.
, 1994, “
Mechanisms of Superplastic Flow
,”
Superplasticity: 60 Years After Pearson
,
N.
Ridley
, ed.,
UMIST: The Institute of Materials
,
London
.
24.
Lee
,
C. S.
,
Lee
,
S. B.
,
Kim
,
J. S.
, and
Chang
,
Y. W.
, 2000, “
Mechanical and Microstructural Analysis on the Superplastic Deformation Behavior of Ti–6Al–4V Alloy
,”
Int. J. Mech. Sci.
0020-7403,
42
(
8
), pp.
1555
1569
.
25.
Ding
,
R.
,
Guo
,
Z. X.
, and
Wilson
,
A.
, 2001, “
Microstructural Evolution of a Ti–6Al–4V Alloy During Thermomechanical Processing
,”
Mater. Sci. Eng., A
0921-5093,
327
, pp.
233
245
.
26.
Guo
,
Z. X.
, and
Ridley
,
N.
, 1987, “
Modelling of Diffusion Bonding of Metals
,”
Mater. Sci. Technol.
,
3
, pp.
945
953
. 0267-0836
27.
Kobatake
,
K.
,
Sekiguchi
,
H.
,
Osakada
,
K.
, and
Yoshikawa
,
K.
, 1980, “
An Analysis of Temperature Distributions in Dieless Drawing by Finite Method-Studies of Dieless Drawing 2
,”
J. Jpn. Soc. Technol. Plast.
0038-1586,
21
(
228
), p.
52
.
28.
Alexander
,
J. M.
, and
Price
,
J. W. H.
, 1978, “
Analytical Solution for Dieless Drawing Utilising a Method of Equalisation of Work Rates
,”
18th MTDR Conference
, London.
29.
Prasad
,
Y. V. R. K.
,
Seshacharyulu
,
T.
,
Mederios
,
S. C.
, and
Frazier
,
W. G.
, 2001, “
Influence of Oxygen Content on the Forging Response of Equiaxed (Alpha and Beta) Preform of Ti–6Al–4V: Commercial vs. ELI Grade
,”
J. Mater. Process. Technol.
0924-0136,
108
, pp.
320
327
.
30.
Smith
,
F. S.
, 1993,
Structures and Properties of Engineering Alloys
, 2nd ed.,
B. J.
Clark
, ed.,
McGraw-Hill
,
New York
.
31.
Guleryuz
,
H.
, and
Cimenoglu
,
H.
, 2004, “
Effects of Thermal Oxidation on Corrosion and Corrosion Wear Behaviour of a Ti–6Al–4V Alloy
,”
Biomaterials
,
25
, pp.
3325
3333
. 0142-9612
32.
Donchev
,
A.
,
Richter
,
E.
,
Schutze
,
M.
, and
Yankov
,
R.
, 2006, “
Improvement of the Oxidation Behaviour of TiAl-Alloys by Treatment With Halogens
,”
Intermetallics
,
14
, pp.
1168
1174
. 0966-9795
33.
Siebel
,
V. E.
, 1947, “
Der derzeitige Stand der Erkenntnisse uber die mechanischen Vorgang beim Drahtziehen
,”
Stahl Eisen
0340-4803,
11/12
, pp.
171
180
.
You do not currently have access to this content.