A novel X-ray synchrotron radiation approach is described for real-time imaging of the initiation and growth of fatigue cracks during ultrasonic fatigue . We report here on new insights on single crystal nickel-base superalloys gained with this approach. A portable ultrasonic fatigue instrument has been designed that can be installed at a high-brilliance X-ray beamline. With a load line and fatigue specimen configuration, this instrument produces stable fatigue crack propagation for specimens as thin as . The in situ cyclic loading/imaging system has been used initially to image real-time crystallographic fatigue and crack growth under positive mean axial stress in the turbine blade alloy CMSX-4.
Issue Section:
Research Papers
1.
Pollock
, T. M.
, and Tin
, S.
, 2006, “Nickel-Based Superalloys for Advanced Turbine Engines: Chemistry, Microstructure and Properties
,” J. Propul. Power
0748-4658, 22
(2
), pp. 362
–374
.2.
Cowles
, B. A.
, 1996, “High Cycle Fatigue in Aircraft Gas Turbines: An Industry Perspective
,” Int. J. Fract.
0376-9429, 80
, pp. 147
–163
.3.
Larsen
, J. M.
, Worth
, B. D.
, Annis
, C. G.
, and Haake
, F. K.
, 1989, “An Assessment of the Role of Near-Threshold Crack Growth in High-Cycle-Fatigue Life Prediction of Aerospace Titanium Alloys Under Turbine Engine Spectra
,” Int. J. Fract.
0376-9429, 80
, pp. 237
–255
.4.
Wright
, P. K.
, Jain
, M.
, and Cameron
, D.
, 2004, “High Cycle Fatigue in a Single Crystal Superalloy: Time Dependence at Elevated Temperature
,” Superalloys-2004
, K. A.
Green
, T. M.
Pollack
, H.
Harada
, T. E.
Howson
, R. C.
Reed
, J. J.
Schirra
, and S.
Walston
, eds., TMS
, Seven Springs, PA
, pp. 657
–666
.5.
Brown
, G. S.
, and Lavender
, W.
, 1991, Handbook on Synchrotron Radiation
, North-Holland
, Amsterdam
, Vol. 3
, Chap. 2.6.
Willertz
, L.
, 1980, “Ultrasonic Fatigue
,” Int. Met. Rev.
0308-4590, 2
, pp. 65
–78
.7.
Mayer
, H.
, 1999, “Fatigue Crack Growth and Threshold Measurements at Very High Frequencies
,” Int. Mater. Rev.
0950-6608, 44
(1
), pp. 1
–34
.8.
Fonte
, M. A.
, Stanzl-Tschegg
, S. E.
, Tschegg
, E. K.
, and Vasudevan
, A. K.
, 2001, “Fatigue Crack Growth and Thresholds in 7075 Aluminium Alloy at Negative Stress Rations
,” Proceedings of International Conference on Fatigue in the Very High Cycle Regime
, E.
Stanzl-Tschegg
and H.
Mayer
, eds., Vienna, Austria
, pp. 363
–370
.9.
2006, Special Issue on the Third International Conference on Very High Cycle Fatigue (VHCF-3), Kyoto/Kusatsu, Japan on 16–19 September, 2004,
T.
Sakai
, Y.
Ochi
, and J. W.
Jones
, eds., Int. J. Fatigue, 28(11), pp. 1437–1666.10.
2007,
Proceedings of Fourth International Conference on Very High Cycle Fatigue
, J. E.
Allison
, J. W.
Jones
, J. M.
Larsen
, and R.
Ritchie
, eds., TMS
, Warrendale, PA
.11.
Yi
, J. Z.
, Torbet
, C. J.
, Feng
, Q.
, Pollock
, T. M.
, and Jones
, J. W.
, 2007, “Ultrasonic Fatigue of a Single Crystal Ni-Base Superalloy at 1000°C
,” Mater. Sci. Eng., A
0921-5093, 443
(1–2
), pp. 142
–149
.12.
Shyam
, A.
, Torbet
, C. J.
, Jha
, S. K.
, Larsen
, J. M.
, Caton
, M. J.
, Szczepanski
, C. J.
, Pollock
, T. M.
, and Jones
, J. W.
, 2004, “Development of Ultrasonic Fatigue for Rapid High Temperature Fatigue Studies in Turbine Engine Materials
,” Superalloys-2004
, K. A.
Green
, T. M.
Pollack
, H.
Harada
, T. E.
Howson
, R. C.
Reed
, J. J.
Schirra
, and S.
Walston
, eds., TMS
, Seven Springs, PA
, pp. 259
–268
.13.
Szczepanski
, C. J.
, Shyam
, A.
, Jha
, S. K.
, Larsen
, J. M.
, Torbet
, C. J.
, Johnson
, S. J.
, and Jones
, J. W.
, 2005, “Characterization of the Role of Microstructure on the Fatigue Life of Ti-6Al-2Sn-4Zr-6Mo Using Ultrasonic Fatigue
,” Materials Damage Prognosis
, J. M.
Larsen
, L.
Christodoulou
, J. R.
Calcaterra
, M. L.
Dent
, M. M.
Derriso
, W. J.
Hardman
, J. W.
Jones
, and S. M.
Russ
, eds., TMS
, pp. 315
–320
.14.
Zhu
, X.
, Shyam
, A.
, Jones
, J. W.
, Mayer
, H.
, Lasecki
, J. V.
, and Allison
, J. E.
, 2006, “Effects of Microstructure and Temperature on Fatigue Behavior of E319-T7 Cast Aluminum Alloy in Very Long Life Cycles
,” Int. J. Fatigue
0142-1123, 28
, pp. 1566
–1571
.15.
Torbet
, C. J.
, Liu
, L.
, Yi
, J. Z.
, Husseini
, N. S.
, Kumah
, D. P.
, Clarke
, R.
, Pollock
, T. M.
, and Jones
, J. W.
, 2007, “An Experimental Setup for In Situ Imaging of High Cycle Fatigue Crack Growth by Synchrotron X-Radiation
,” Rev. Sci. Instrum.
0034-6748, submitted.16.
Feng
, Q.
, Picard
, Y. N.
, Liu
, H.
, Yalisove
, S. M.
, Mourou
, G.
, and Pollock
, T. M.
, 2004, “Femtosecond Laser Micromachining of Single-Crystal Superalloys
,” Superalloys-2004
, K. A.
Green
, T. M.
Pollack
, H.
Harada
, T. E.
Howson
, R. C.
Reed
, J. J.
Schirra
, and S.
Walston
, eds., TMS
, Seven Springs, PA
, pp. 687
–696
.17.
The MathWorks Inc., Natick, MA.
18.
Rasband
, W. S.
, IMAGEJ, U.S. National Institutes of Health
, Bethesda, MA, http://rsb.info.nih.gov/ij/http://rsb.info.nih.gov/ij/, 1997
–2007
.19.
Chan
, K. S.
, Feiger
, J.
, Lee
, Y.-D.
, John
, R.
, and Hudak
, Jr., S. J.
, 2005, “Fatigue Crack Growth Thresholds of Deflected Mixed-Mode Cracks in PWA1484
,” ASME J. Eng. Mater. Technol.
0094-4289, 127
, pp. 2
–7
.20.
Snigirev
, A.
, Snigireva
, I.
, Kohn
, V.
, Kuznetsov
, S.
, and Schelokov
, I.
, 1995, “On the Possibilities of X-Ray Phase Contrast Microimaging by Coherent High-Energy Synchrotron Radiation
,” Rev. Sci. Instrum.
0034-6748, 66
(12
), pp. 5486
–5492
.21.
Husseini
, N. S.
, Kumah
, D. P.
, Yi
, J. Z.
, Torbet
, C. J.
, Dufresne
, E.
, Arms
, D. A.
, Jones
, J. W.
, Pollock
, T. M.
, and Clarke
, R.
, 2007, “Mapping Single-Crystal Dendritic Microstructure in Nickel-Base Superalloys With Synchrotron Radiation
,” Acta Mater.
1359-6454, submitted.22.
Leverant
, G. R.
, and Gell
, M.
, 1975, “The Influence of Temperature and Cyclic Frequency on the Fatigue Fracture of Cube Oriented Nickel-Base Superalloy Single Crystals
,” Metall. Trans. A
0360-2133, 6A
, pp. 367
–371
.23.
Reed
, P. A. S.
, Sinclair
, I.
, and Wu
, X. D.
, 2000, “Fatigue Crack Path Prediction in UDIMET 720 Nickel-Based Alloy Single Crystals
,” Metall. Mater. Trans. A
1073-5623, 31
(1
), pp. 109
–123
.24.
Lerch
, B. A.
, and Antolovich
, S. D.
, 1990, “Fatigue Crack Propagation Behavior of a Single Crystalline Superalloy
,” Metall. Trans. A
0360-2133, 21
(8
), pp. 2169
–2177
.25.
Arakere
, N. K.
, 2004, “High-Temperature Fatigue Properties of Single Crystal Superalloys in Air and Hydrogen
,” ASME J. Eng. Gas Turbines Power
0742-4795, 126
(3
), pp. 590
–603
.26.
MacLachlan
, D. W.
, and Knowles
, D. M.
, 2001, “Fatigue Behaviour and Lifing of Two Single Crystal Superalloys
,” Fatigue Fract. Eng. Mater. Struct.
8756-758X, 24
(8
), pp. 503
–521
.27.
Lukas
, P.
, Kunz
, L.
, and Svoboda
, M.
, 2004, “High Cycle Fatigue of Superalloy Single Crystals at High Mean Stress
,” Mater. Sci. Eng., A
0921-5093, 387–389
, pp. 505
–510
.28.
Chen
, Q.
, and Liu
, H. W.
, 1988, “Resolved Shear Stress Intensity Coefficient and Fatigue Crack Growth in Large Crystals
,” NASA-CR-182137.29.
Telesman
, J.
, and Ghosn
, L. J.
, 1996, “Fatigue Crack Growth Behavior of PWA 1484 Single Crystal Superalloy at Elevated Temperatures
,” ASME J. Eng. Gas Turbines Power
0742-4795, 118
(2
), pp. 399
–405
.30.
Flouriot
, S.
, Forest
, S.
, and Remy
, L.
, 2003, “Strain Localization Phenomena under Cyclic Loading: Application to Fatigue of Single Crystals
,” Comput. Mater. Sci.
0927-0256, 26
, pp. 61
–70
.31.
Forest
, S.
, Boubidi
, P.
, and Sievert
, R.
, 2001, “Strain Localization Patterns at a Crack Tip in Generalized Single Crystal Plasticity
,” Scr. Mater.
1359-6462, 44
(6
), pp. 953
–958
.Copyright © 2008
by American Society of Mechanical Engineers
You do not currently have access to this content.