Traditionally, the hardness of materials is determined from indentation tests at low loading rates (static). However, considerably less work has been conducted in studying the dynamic hardness of materials using relatively high loading rates. In the present work, two models are used to predict strain rate dependency in hardness. The first model is a power law expression that is based on the dependence of the yield stress on the strain rate. This model is relatively simple in implementation, and it is quite easy to determine its parameters from simple uniaxial experiments. The second model is a micromechanical based model using Taylor’s hardening law. It utilizes the behavior of dislocation densities at high strain rates in metals in order to relate dynamic hardness to strain rates. The latter model also accounts for any changes in temperature that could exist. A finite element is also run and compared with the two models proposed in this work. Results from both models are compared with available experimental results for oxygen-free high-conductivity copper and 1018 cold rolled steel, and both models show reasonably good agreement with the experimental results.

1.
Tabor
,
D.
, 1951,
The Hardness of Metals
,
Clarendon Press
, Oxford.
2.
Koeppel
,
B. J.
, and
Subhash
,
G.
, 1999, “
Characteristics of Residual Plastic Zone Under Static and Dynamic Vickers Indentations
,”
Wear
0043-1648,
224
(
12
), pp.
56
67
.
3.
Anton
,
R. J.
, and
Subhash
,
G.
, 2000, “
Dynamic Vickers Indentation of Brittle Materials
,”
Wear
0043-1648,
239
(
1
), pp.
27
35
.
4.
Lu
,
J.
,
Suresh
,
S.
, and
Ravichandran
,
G.
, 2003, “
Dynamic Indentation for Determining the Strain Rate Sensitivity of Metals
,”
J. Mech. Phys. Solids
0022-5096,
51
(
11-12
), pp.
1923
1938
.
5.
Andrews
,
E. W.
,
Giannakopoulos
,
A. E.
,
Plisson
,
E.
, and
Suresh
,
S.
, 2002, “
Analysis of the Impact of a Sharp Indenter
,”
Int. J. Solids Struct.
0020-7683,
39
(
15
), pp.
281
295
.
6.
Voyiadjis
,
G. Z.
, and
Buckner
,
N. E.
, 1983, “
Indentation of a Half-Space With a Rigid Indentor
,”
Int. J. Numer. Methods Eng.
0029-5981,
19
(
10
), pp.
1555
1578
.
7.
Voyiadjis
,
G. Z.
,
Poe
,
A. A.
, and
Kiousis
,
P. D.
, 1986, “
Finite-Strain Elasto-Plastic Solution for Contact Problems
,”
J. Eng. Mech.
0733-9399,
112
(
3
), pp.
273
292
.
8.
Vasauskas
,
V.
, 2002, “
Dynamic Hardness During Different Phases of Indentation
,”
VDI BERICHTE: Joint International Conference IMEKO TC3/TC5/TC20
, No. 1685, pp.
359
364
.
9.
Sundararajan
,
G.
, and
Tirupataiah
,
Y.
, 2006, “
The Localization of Plastic Flow Under Dynamic Indentation Conditions: I Experimental Results
,”
Acta Mater.
1359-6454,
54
(
3
), pp.
565
575
.
10.
Sundararajan
,
G.
, and
Tirupataiah
,
Y.
, 2006, “
The Localization of Plastic Flow Under Dynamic Indentation Conditions: II. Analysis of Results
,”
Acta Mater.
1359-6454,
54
(
3
), pp.
577
586
.
11.
Staker
,
M. R.
, and
Holt
,
D. L.
, 1972, “
The Dislocation Cell Size and Dislocation Density in Copper Deformed at Temperatures Between 25 and 700°C
,”
Acta Metall.
0001-6160,
20
(
4
), pp.
569
579
.
12.
Senseny
,
P. E.
,
Duffy
,
J.
, and
Hawley
,
R. H.
, 1978, “
Experiments on Strain Rate History and Temperature Effects During the Plastic Deformation of Close-Packed Metals
,”
ASME J. Appl. Mech.
0021-8936,
45
(
1
), pp.
60
66
.
13.
Kumar
,
A.
, and
Kumble
,
R. G.
, 1969, “
Viscous Drag Dislocation at High Strain Rates in Copper
,”
J. Appl. Phys.
0021-8979,
40
(
9
), pp.
3475
3480
.
14.
Prandtl
,
L.
, 1920, “
Uber die Härte plastischer Körper
” (The Hardness of Plastic Bodies), Nachr. D. Gesellschaft d. Wissensch. Zu gottingen, Mathematisch-physikalische Klasse, pp.
74
85
.
15.
Atkins
,
A. G.
, and
Tabor
,
D.
, 1965, “
Plastic Indentation in Metals With Cones
,”
J. Mech. Phys. Solids
0022-5096,
13
(
3
), pp.
149
164
.
16.
Dao
,
M.
,
Chollacoop
,
N.
,
Van Vliet
,
K. J.
,
Venkatesh
,
T. A.
, and
Suresh
,
S.
, 2001, “
Computational Modeling of the Forward and Reverse Problems in Instrumented Sharp Indentation
,”
Acta Mater.
1359-6454,
49
(
19
), pp.
3899
3918
.
17.
Marsh
,
D. M.
, 1964, “
Plastic Flow in Glass
,”
Proc. R. Soc. London, Ser. A
1364-5021,
279
(
1378
), pp.
420
435
.
18.
Samuels
,
L. E.
, and
Mulhearn
,
T. O.
, 1957, “
An Experimental Investigation of the Deformed Zone Associated With Indentation Hardness Impressions
,”
J. Mech. Phys. Solids
0022-5096,
5
(
2
), pp.
125
134
.
19.
Hopkins
,
H. G.
, 1960, “
Dynamic Expansion of Spherical Cavities in Metal
,” in:
Progress in Solid Mechanics 1
,
I. N.
Sneddon
and
R.
Hill
(eds),
North Holland
, Amsterdam.
20.
Meyers
,
M. A.
, 1994,
Dynamic Behavior of Materials
,
Wiley
, New York.
21.
Taylor
,
G. I.
, 1938, “
Plastic Strain in Metals
,”
J. Inst. Met.
0020-2975,
62
, pp.
307
324
.
22.
ABAQUS,
User Manual
, 2006, Version 6.6, Habbitt,
Karlsson and Sorensen, Inc.
, Providence, RI.
23.
Rittel
,
D.
,
Ravichandran
,
G.
, and
Lee
,
S.
, 2002, “
Large Strain Constitutive Behavior of OFHC Copper Over a Wide Range of Strain Rates Using the Shear Compression Specimen
,”
Mech. Mater.
0167-6636,
34
(
16
), pp.
627
642
.
24.
Voyiadjis
,
G. Z.
, and
Abed
,
F. H.
, 2005, “
Microstructural Based Models for BCC and FCC Metals With Temperature and Strain Rate Dependency
,”
Mech. Mater.
0167-6636,
37
(
2-3
), pp.
355
378
.
25.
Costin
,
L. S.
,
Crisman
,
E. E.
,
Hawley
,
R. H.
, and
Duffy
,
J.
, 1980, “
On the Localization of Plastic Flow in Mild Steel Tubes Under Dynamic Torsional Loading
,”
Inst. Phys. Conf. Ser.
0305-2346,
47
, pp.
90
100
.
26.
Shawki
,
T. G.
, and
Clifton
,
R. J.
, 1989, “
Shear Band Formation in Thermal Viscoplastic Materials
,”
Mech. Mater.
0167-6636,
8
(
1
), pp.
13
43
.
27.
Steidel
,
R. F.
, and
Makerov
,
C. E.
, 1960, “
The Tensile Properties of Some Engineering Materials at Moderate Rates of Strain
,”
ASTM Bull
0365-7205,
247
, pp.
57
64
.
28.
Clough
,
R. B.
,
Webb
,
S. C.
, and
Armstrong
,
R. W.
, 2003, “
Dynamic Hardness Measurements Using a Dropped Ball: With Application to 1018 Steel
,”
Mater. Sci. Eng., A
0921-5093,
360
(
1-2
), pp.
396
407
.
29.
Ramanathan
,
R.
, and
Foley
,
R. P.
, 2001, “
Effect of Prior Microstructure on Austenite Decomposition and Associated Distortion
,” MMAE Department, Illinois Institute of Technology.
You do not currently have access to this content.