An established dislocation density related, one-internal variable model was used, with some modifications, as a basis for modeling the mechanical response of aluminum alloy AA6111. In addition to conventional rolling, equal channel angular pressing (ECAP) was used to produce a wide range of grain sizes, down to the submicrometer scale. The samples were heat treated before and after both processes to optimize tensile ductility. Implementation of the model to uniaxial tensile response of the conventionally rolled and the ECAP processed materials confirmed its good predictive capability. The model was further used to formulate simple relations between true uniform strain and the constitutive parameters that allow reliable prediction of the uniform elongation.

1.
Saito
,
Y.
,
Utsunomiya
,
H.
,
Suzuki
,
H.
, and
Sakai
,
T.
, 2000, “
Improvement in the r-Value of Aluminum Strip by a Continuous Shear Deformation Process
,”
Scr. Mater.
1359-6462,
42
(
12
), pp.
1139
1144
.
2.
Rhee
,
K. H.
,
Lapovok
,
R.
, and
Thomson
,
P. F.
, 2005, “
The Influence of Severe Plastic Deformation on the Mechanical Properties of AA6111
,”
JOM
1047-4838,
5
, pp.
62
66
.
3.
Koch
,
C. C.
, and
Malow
,
T. R.
, 1999, “
The Ductility Problem in Nanocrystalline Materials
,”
J. Metastable Nanocryst. Mater.
1422-6375,
2–6
, pp.
565
574
.
4.
Morris
,
D. G.
, 2001, “
Strength and Ductility of Nanocrystalline Materials: What Do We Really Understand?
,”
Science of Metastable and Nanocrystalline Alloys Structures, Properties and Modelling
,
A. R.
Dinesen
et al.
, eds.,
Riso National Laboratory
, Roskilde, Denmark, pp.
89
104
.
5.
Carreker
, Jr.,
R. P.
, and
Hibbard
, Jr.,
W. R.
, 1957, “
Tensile Deformation of Aluminum as a Function of Temperature, Strain Rate, and Grain Size
,”
Trans. AIME
0096-4778,
209
, pp.
1157
1163
.
6.
Carreker
, Jr.,
R. P.
, and
Hibbard
, Jr.,
W. R.
, 1953, “
Tensile Deformation of High-Purity Copper as a Function of Temperature, Strain Rate, and Grain Size
,”
Acta Metall.
0001-6160,
1
, pp.
654
663
.
7.
Kocks
,
U. F.
, 1976, “
Laws for Work-Hardening and Low Temperature Creep
,”
J. Eng. Mater. Technol.
0094-4289,
98
, pp.
76
85
.
8.
Mecking
,
H.
, and
Kocks
,
U. F.
, 1981, “
Kinetics of Flow and Strain-Hardening
,”
Acta Metall.
0001-6160,
29
(
11
), pp.
1865
1875
.
9.
Estrin
,
Y.
, and
Mecking
,
H.
, 1984, “
A Unified Phenomenological Description of Work Hardening and Creep Based on One-Parameter Models
,”
Acta Metall.
0001-6160,
32
(
1
), pp.
57
70
.
10.
Estrin
,
Y.
, 1996, “
Dislocation-Density-Related Constitutive Modeling
,”
Unified Constitutive Laws of Plastic Deformation
,
A. S.
Krausz
, and
K.
Krausz
, eds.,
Academic
, San Diego, CA, pp.
69
106
.
11.
Narutani
,
T.
, and
Takamura
,
J.
, 1991, “
Grain-Size Strengthening in Terms of Dislocation Density Measured by Resistivity
,”
Acta Metall. Mater.
0956-7151,
39
(
8
), pp.
2037
2049
.
12.
Lloyd
,
D. J.
, and
Kenny
,
D.
, 1982, “
The Large Strain Deformation of Some Aluminum Alloys
,”
Metall. Trans. A
0360-2133,
13A
, pp.
1445
1452
.
13.
Voce
,
E.
, 1948, “
The Relationship Between Stress and Strain for Homogeneous Deformation
,”
J. Inst. Met.
0020-2975,
74
, pp.
537
562
.
14.
Christ
,
B. W.
, and
Smith
,
G. V.
, 1967, “
Comparison of the Hall-Petch Parameters of Zone-Refined Iron Determined by the Grain Size and Extrapolation Methods
,”
Acta Metall.
0001-6160,
15
, pp.
809
816
.
15.
Morrison
,
W. B.
, 1966, “
Effect of Grain Size on Stress-Strain Relationship in Low-Carbon Steel
,”
ASM Trans. Q.
0097-3912,
59
, pp.
824
846
.
16.
Thompson
,
A. W.
,
Baskes
,
M. I.
, and
Flanagan
,
W. F.
, 1973, “
The Dependence of Polycrystal Work Hardening on Grain Size
,”
Acta Metall.
0001-6160,
21
, pp.
1017
1028
.
17.
Palmer
,
I. G.
, and
Smith
,
G. C.
, 1968, “
Fracture of Internally Oxidized Copper Alloys
,”
Oxide Dispersion Strengthening
,
G. S.
Ansell
,
T. D.
Cooper
and
F. V.
Lenel
, eds., Vol.
47
,
Gordon and Breach Science
, New York, pp.
253
290
.
18.
Kocks
,
U. F.
, 1987, “
Constitutive Behaviour Based on Crystal Plasticity
,”
Unified Constitutive Equations for Creep and Plasticity
,
A. K.
Miller
, ed.,
Elsevier Applied Science
, London, pp.
1
88
.
19.
Chu
,
D.
, and
Morris
, Jr.,
J. W.
, 1996, “
The Influence of Microstructure on Work Hardening in Aluminum
,”
Acta Mater.
1359-6454,
44
, pp.
2599
2610
.
20.
Jin
,
H.
, and
Lloyd
,
D. J.
, 2004, “
The Tensile Response of a Fine-Grained AA5754 Alloy Produced by Asymmetric Rolling and Annealing
,”
Metall. Mater. Trans. A
1073-5623,
35A
, pp.
997
1006
.
21.
Lloyd
,
D. J.
, 2004, “
Some Aspects of the Metallurgy of Automotive Al Alloys
,”
Mater. Forum
0883-2900,
28
, pp.
107
117
.
22.
Poole
,
W. J.
,
Wang
,
X.
,
Lloyd
,
D. J.
, and
Embury
,
J. D.
, 2005, “
The Shearable/Non-shearable transition in Al–Mg–Si–Cu Precipitation Hardening Alloys: Implications on the Distribution of Slip, Work Hardening and Fracture
,”
Philos. Mag.
1478-6435,
85
, pp.
3113
3135
.
23.
Tiryakioglu
,
M.
, and
Staley
,
J. T.
, 2003, “
Physical Metallurgy and the Effect of Alloying Additions in Aluminum Alloys
,”
Handbook of Aluminum: Physical Metallurgy and Processes
,
G. E.
Totten
and
D. S.
MacKenzie
, eds., Vol.
1
,
Marcel Dekker
, New York, pp.
81
209
.
24.
Zeipper
,
L. F.
,
Zehetbauer
,
M. J.
, and
Holzleithner
,
Ch.
, 2005, “
Defect Based Micromechanical Modeling and Simulation of NanoSPD CP–Ti in Post-Deformation
,”
Mater. Sci. Eng., A
0921-5093,
A410–411
, pp.
217
221
.
25.
Jones
,
R. L.
, and
Conrad
,
H.
, 1969, “
The Effect of Grain Size on the Strength of Alpha-Titanium at Room Temperature
,”
Trans. Metall. Soc. AIME
0543-5722,
245
, pp.
779
789
.
26.
Morrison
,
W. B.
, and
Miller
,
R. L.
, 1970, “
The Ductility of Ultrafine-Grain Alloys
,”
Ultrafine-Grain Metals
,
J. J.
Burke
and
V.
Weiss
, eds.,
Syracuse University Press
, Syracuse, NY, pp.
183
211
.
You do not currently have access to this content.