In the paper the continuous dynamic recrystallization (CDRX) phenomena occurring in the FSW of AA7075-T6 butt joints is investigated at the varying of the most relevant technological and geometrical parameters. In particular, both experiments and numerical simulations obtained utilizing a 3D Lagrangian implicit, coupled, rigid-viscoplastic model have been developed on FSW butt joints. The resulting microstructure at the core of the weldings is correlated to the material flow occurring during the FSW process.

1.
Liu
,
H. J.
,
Fujii
,
H.
,
Maeda
,
M.
, and
Nogi
,
K.
, 2003, “
Tensile Properties and Fracture Locations of Friction-Stir-Welded Joints of 2017-T351 Aluminum Alloy
,”
J. Mater. Process. Technol.
0924-0136,
142
, pp.
692
696
.
2.
Rhodes
,
C. G.
,
Mahoney
,
M. W.
,
Bingel
,
W. H.
,
Spurling
,
R. A.
, and
Bampton
,
C. C.
, 1987, “
Effects of Friction Stir Welding on Microstructure of 7075 Aluminum
,”
Scr. Mater.
1359-6462,
36
(
1
), pp.
69
75
.
3.
Guerra
,
M.
,
Schmidt
,
C.
,
McClure
,
L. C.
,
Murr
,
L. E.
, and
Nunes
,
A. C.
, 2003, “
Flow Patterns During Friction Stir Welding
,”
Mater. Charact.
1044-5803,
49
, pp.
95
101
.
4.
Su
,
J. Q.
,
Nelson
,
T. W.
,
Mishra
,
R.
, and
Mahoney
,
M.
, 2003, “
Microstructural Investigation of Friction Stir Welded 7050-T654 Aluminium
,”
Acta Mater.
1359-6454,
51
, pp.
713
729
.
5.
Shigematsu
,
I.
,
Kwon
,
Y. J.
,
Suzuki
,
K.
,
Imai
,
T.
, and
Saito
,
N.
, 2003, “
Joining of 5083 and 6061 Aluminum Alloys by Friction Stir Welding
,”
J. Mater. Sci. Lett.
0261-8028,
22
, pp.
343
356
.
6.
Lee
,
W. B.
,
Yeon
,
Y. M.
, and
Jung
,
S. B.
, 2003, “
The Improvement of Mechanical Properties of Friction-Stir-Welded A356 Al Alloy
,”
Mater. Sci. Eng., A
0921-5093,
355
, pp.
154
159
.
7.
Barcellona
,
A.
,
Buffa
,
G.
, and
Fratini
,
L.
, 2004, “
Process Parameters Analysis in Friction Stir Welding of AA6082-T6 Sheets
,” Keynote Paper of the VII ESAFORM Conference, pp.
371
374
.
8.
Peel
,
M.
,
Steuwer
,
A.
,
Preuss
,
M.
, and
Withers
,
J. P.
, 2003, “
Microstructure, Mechanical Properties and Residual Stresses as a Function of Welding Speed in Aluminium AA5083 Friction Stir Welds
,”
Acta Mater.
1359-6454,
51
(
16
), pp.
4791
4801
.
9.
Song
,
M.
, and
Kovacevic
,
R.
, 2003, “
Thermal Modeling of Friction Stir Welding in a Moving Coordinate System and its Validation
,”
Int. J. Mach. Tools Manuf.
0890-6955,
43
, pp.
605
615
.
10.
Schmidt
,
H.
,
Hattel
,
J.
, and
Wert
,
J.
, 2004, “
An Analytical Model for the Heat Generation in Friction Stir Welding
,”
Modell. Simul. Mater. Sci. Eng.
0965-0393,
12
, pp.
143
157
.
11.
Chao
,
Y. J.
,
Qi
,
X.
, and
Tang
,
W.
, 2003, “
Heat Transfer in Friction Stir Welding—Experimental and Numerical Studies
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
125
, pp.
138
145
.
12.
Chen
,
C. M.
, and
Kovacevic
,
R.
, 2003, “
Finite Element Modeling of Friction Stir Welding—Thermal and Thermomechanical Analysis
,”
Int. J. Mach. Tools Manuf.
0890-6955,
43
, pp.
1319
1326
.
13.
Lockwood
,
W. D.
, and
Reynolds
,
A. P.
, 2003, “
Simulation of the Global Response of a Friction Stir Weld Using Local Constitutive Behavior
,”
Mater. Sci. Eng., A
0921-5093,
339
, pp.
35
42
.
14.
Xu
,
S.
, and
Deng
,
X.
, 2002, “
A Three-Dimensional Model for the Friction-Stir Welding Process
,”
Proceedings of the 21th Southestern Conference on Theoretical and Applied Mechanics, Orlando
.
15.
Xu
,
S.
, and
Deng
,
X.
, 2003, “
Two and Three Dimensional Finite Element Models for the Friction Stir Welding Process
,”
Proceedings of the 4th International Symposium on Friction Stir Welding
,
Park City
.
16.
Deng
,
X.
, and
Xu
,
S.
, 2001, “
Solid Mechanics Simulation of Friction Stir Welding Process
,”
Trans. NAMRI/SME
1047-3025,
XXIX
, pp.
631
638
.
17.
Fratini
,
L.
,
Beccari
,
S.
, and
Buffa
,
G.
, 2005, “
Friction Stir Welding FEM Model Improvement Through Inverse Thermal characterization
,”
Trans. NAMRI/SME
1047-3025,
XXXIII
, pp.
259
266
.
18.
Buffa
,
G.
,
Hua
,
J.
,
Shivpuri
,
R.
, and
Fratini
,
L.
, 2006, “
A Continuum Based FEM Model for Friction Stir Welding—Model Development
,”
Mater. Sci. Eng., A
0921-5093,
419
(
1–2
), pp.
389
396
.
19.
Fratini
,
L.
, and
Buffa
,
G.
, 2005, “
CDRX Modeling in Friction Stir Welding of Aluminium Alloys
,”
Int. J. Mach. Tools Manuf.
0890-6955,
45
, pp.
1188
1194
.
20.
Cerri
,
E.
,
Evangelista
,
E.
,
Forcellese
,
A.
, and
McQueen
,
H. J.
, 1995, “
Comparative Hot Workability of 7012 and 7075 Alloys After Different Pretreatments
,”
Mater. Sci. Eng., A
0921-5093,
197
, pp.
181
198
.
21.
Jata
,
K. V.
, and
Semiatin
,
S. L.
, 2000, “
Continuous Dynamic Recrystallization During Friction Stir Welding of High Strength Aluminum Alloys
,”
Scr. Mater.
1359-6462,
43
, pp.
743
749
.
22.
Liu
,
G.
,
Murr
,
L. E.
,
Niou
,
C.-S.
,
McClure
,
J. C.
, and
Vega
,
F. R.
, 1997, “
Microstructural Aspects of the Friction-Stir Welding of 6061-T6 Aluminum
,”
Scr. Mater.
1359-6462,
37
(
3
), pp.
355
361
.
23.
Vandermeer
,
R. A.
, and
Juul Jensen
,
D.
, 2001, “
Microstructural Path and Temperature Dependence of Recrystallization in Commercial Aluminum
,”
Acta Mater.
1359-6454,
49
, pp.
2083
2094
.
24.
Lenard
,
J. G.
,
Pietrzyk
,
M.
, and
Cser
,
L.
, 1999,
Mathematical and Physical Simulation of the Properties of Hot Rolled Products
,
Elsevier
.
25.
Fratini
,
L.
,
Palmeri
,
D.
,
Buffa
,
G.
,
Hua
,
J.
, and
Shivpuri
,
R.
, “
Material Flow in FSW of AA7075-T6 Butt Joints: Phenomenological Considerations and Justification
,”
Mater. Sci. Eng., A
0921-5093 (submitted).
You do not currently have access to this content.