In the modeling of microstructural damage mechanisms of composites, damage evolution plays an important role and has significant effects on the overall nonlinear behavior of composites. In this study, a microstructural Monte Carlo simulation method is proposed to predict the volume fraction evolution of damaged particles due to particle-cracking for metal matrix composites with randomly distributed spheroidal particles. The performance function is constructed using a stress-based damage criterion. A micromechanics-based elastoplastic and damage model is applied to compute the local stress field and to estimate the overall nonlinear response of the composites with particle-cracking damage mechanism. The factors that affect the damage evolution are investigated and the effects of particle shape and damage strength on damage evolution are discussed in detail. Simulation results are compared with experiments and good agreement is obtained.

1.
Schwartz
,
Mel M.
, 1996,
Composite Materials Volume I
,
Prentice–Hall PTR
, Upper Saddle River, New Jersey.
2.
Clyne
,
T. W.
, and
Withers
,
P. J.
, 1993,
An Introduction to Metal Matrix Composites
,
Cambridge University Press
, Cambridge.
3.
Suresh
,
S.
,
Mortensen
,
A.
, and
Needleman
,
A.
, 1993,
Fundamentals of Metal-Matrix Composites
,
Butterworth-Heinemann
, London.
4.
Llorca
,
J.
,
Martin
,
A.
,
Ruiz
,
J.
, and
Elices
, 1993, “
Particulate Fracture During Deformation of a Spray Formed Metal-Matrix Composite
,”
Metall. Trans. A
0360-2133,
24A
, pp.
1575
1588
.
5.
Zhao
,
Y. H.
, and
Weng
,
G. J.
, 1996, “
Plasticity of a Two-Phase Composite With Partially Debonded Inclusions
,”
Int. J. Plast.
0749-6419,
12
, pp.
781
804
.
6.
Zhao
,
Y. H.
, and
Weng
,
G. J.
, 1997, “
Transversely Isotropic Moduli of Two Partially Debonded Composites
,”
Int. J. Solids Struct.
0020-7683,
34
, pp.
493
507
.
7.
Zhao
,
Y. H.
, and
Weng
,
G. J.
, 2002, “
The Effect of Debonding Angle on the Reduction of Effective Moduli of Particle and Fiber-Reinforced Composites
,”
J. Appl. Mech.
0021-8936,
69
, pp.
292
302
.
8.
Sun
,
L. Z.
,
Ju
,
J. W.
, and
Liu
,
H. T.
, 2003, “
Elastoplastic Modeling of Metal Matrix Composites With Evolutionary Particle Debonding
,”
Mech. Mater.
0167-6636,
35
, pp.
559
569
.
9.
Sun
,
L. Z.
,
Liu
,
H. T.
, and
Ju
,
J. W.
, 2003, “
Effect of Particle Cracking on Elastoplastic Behaviour of Metal Matrix Composites
,”
Int. J. Numer. Methods Eng.
0029-5981,
56
(
14
), pp.
2183
2198
.
10.
Liu
,
H. T.
,
Sun
,
L. Z.
, and
Ju
,
J. W.
, 2004, “
An Interfacial Debonding Model for Particle-Reinforced Composites
,”
Int. J. Damage Mech.
1056-7895,
14
, pp.
163
185
.
11.
Derrien
,
K.
,
Fitoussi
,
J.
,
Guo
,
G.
, and
Baptiste
,
D.
, 2000, “
Prediction of the Effective Damage Properties and Failure Properties of Nonlinear Anisotropic Discontinuous Reinforced Composites
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
185
, pp.
93
107
.
12.
Brechet
,
Y.
,
Embury
,
J. D.
,
Tao
,
S.
, and
Luo
,
L.
, 1991, “
Damage Initiation in Metal Matrix Composites
,”
Acta Metall. Mater.
0956-7151,
39
, pp.
1781
1786
.
13.
Caceres
,
C. H.
, and
Griffiths
,
J. R.
, 1996, “
Damage by the Cracking of Silicon Particles in an Al–7Si–0.4Mg Casting Alloy
,”
Acta Mater.
1359-6454,
44
(
1
), pp.
25
33
.
14.
Li
,
M.
,
Ghosh
,
S.
,
Richmond
,
O.
,
Weiland
,
H.
, and
Rouns
,
T. N.
, 1999, “
Three-Dimensional Characterization and Modeling of Particle Reinforced Metal Matrix Composites Part II: Damage Characterization
,”
Mater. Sci. Eng., A
0921-5093,
266
, pp.
221
240
.
15.
Weibull
,
W.
, 1951, “
A Statistical Distribution Function of Wide Applicability
,”
J. Appl. Mech.
0021-8936,
18
, pp.
293
297
.
16.
Llorca
,
J.
,
Martinez
,
J. L.
, and
Elices
,
M.
, 1997, “
Reinforcement Fracture and Tensile Ductility in Sphere-Reinforced Metal-Matrix Composites
,”
Fatigue Fract. Eng. Mater. Struct.
8756-758X,
20
(
5
), pp.
689
702
.
17.
Wilkinson
,
D. S.
,
Maire
,
E.
, and
Embury
,
J. D.
, 1997, “
The Role of Heterogeneity on the Flow and Fracture of Two-Phase Materials
,”
Mater. Sci. Eng., A
0921-5093,
233
, pp.
145
154
.
18.
Gonzalez
,
C.
, and
Llorca
,
J.
, 2000, “
A Self-Consistent Approach to the Elasto-Plastic Behaviour of Two-Phase Materials Including Damage
,”
J. Mech. Phys. Solids
0022-5096,
48
, pp.
675
692
.
19.
Segurado
,
J.
,
Gonzalez
,
C.
, and
Llorca
,
J.
, 2003, “
A Numerical Investigation of the Effect of Particle Clustering on the Mechanical Properties of Composites
,”
Acta Mater.
1359-6454,
51
, pp.
2355
2369
.
20.
Eckschlager
,
A.
,
Han
,
W.
, and
Bohm
,
H. J.
, 2002, “
A Unit Cell Model for Brittle Fracture of Particles Embedded in a Ductile Matrix
,”
Comput. Mater. Sci.
0927-0256,
25
, pp.
85
91
.
21.
Lewis
,
C. A.
, and
Withers
,
P. J.
, 1995, “
Weibull Modeling of Particle Cracking in Metal Matrix Composites
,”
Acta Metall. Mater.
0956-7151,
43
(
10
), pp.
3685
3699
.
22.
Lee
,
K.
,
Moorthy
,
S.
, and
Ghosh
,
S.
, 1999, “
Multiple Scale Computational Model for Damage in Composite Materials
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
172
, pp.
175
201
.
23.
Wu
,
H. C.
,
Chang
,
K. J.
, and
Schwarz
,
J.
, 1976, “
Fracture in the Compression of Columnar Gained Ice
,”
Eng. Fract. Mech.
0013-7944,
8
, pp.
365
372
.
24.
Wu
,
H. C.
, and
Chang
,
K. J.
, 1978, “
Angled Elliptic Notch Problem in Compression and Tension
,”
J. Appl. Mech.
0021-8936,
45
(
2
), pp.
258
262
.
25.
Eshelby
,
J. D.
, 1957, “
The Determination of the Elastic Field of an Ellipsoidal Inclusion and Related Problems
,”
Proc. R. Soc. London, Ser. A
1364-5021,
241
, pp.
376
396
.
26.
Eshelby
,
J. D.
, 1959, “
The Elastic Field Outside an Ellipsoidal Inclusion
,”
Proc. R. Soc. London, Ser. A
1364-5021,
252
, pp.
561
569
.
27.
Mura
,
T.
, 1987,
Micromechanics of Defects in Solids
, 2nd ed.,
Kluwer Academic
, Dordrecht.
28.
Ju
,
J. W.
, and
Sun
,
L. Z.
, 2001, “
Effective Elastoplastic Behavior of Metal Matrix Composites Containing Randomly Located Aligned Spheroidal Inhomogeneities, Part I: Micromechanics-Based Formulation
,”
Int. J. Solids Struct.
0020-7683,
38
, pp.
183
201
.
29.
Hori
,
M.
, and
Nemat-Nasser
,
S.
, 1993, “
Double-Inclusion Model and Overall Moduli of Multi-Phase Composites
,”
Mech. Mater.
0167-6636,
14
, pp.
189
206
.
30.
Shodja
,
H. M.
, and
Sarvestani
,
A. S.
, 2001, “
Elastic Fields in Double Inhomogeneity by the Equivalent Inclusion Method
,”
ASME J. Appl. Mech.
0021-8936,
68
(
1
), pp.
3
10
.
You do not currently have access to this content.