It has long been argued about which effect, among the effects of strain hardening, strain-rate hardening, and temperature softening, is predominant in governing the material flow stress in machining. This paper presents a new quantitative sensitivity analysis of the flow stress of 18 engineering materials based on the well-known Johnson-Cook model. It is demonstrated that the first predominant factor governing the material flow stress is either strain hardening or thermal softening, depending on the specific material employed and the varying range of temperatures. Strain-rate hardening is the least important factor governing the material flow stress, especially when machining aluminum alloys.

1.
Shirakashi
,
T.
, and
Obikawa
,
T.
,
1998
, “
Recent Progress and Some Difficulties in Computational Modeling of Machining
,”
Mach. Sci. Technol.
,
2
, pp.
277
301
.
2.
Liu
,
C. R.
, and
Guo
,
Y. B.
,
2000
, “
Finite Element Analysis of the Effect of Sequential Cuts and Tool-Chip Friction on Residual Stresses in a Machined Layer
,”
Int. J. Mech. Sci.
,
42
, pp.
1069
1086
.
3.
Shih
,
A. J.
,
1996
, “
Finite Element Analysis of the Rake Angle Effects on Orthogonal Metal Cutting
,”
Int. J. Mech. Sci.
,
38
, pp.
1
17
.
4.
Stevenson
,
R.
,
1997
, “
Study on the Correlation of Workpiece Mechanical Properties from Compression and Cutting Tests
,”
Mach. Sci. Technol.
,
1
, pp.
67
79
.
5.
Stephensen
,
D. A.
,
1989
, “
Material Characterization for Metal-Cutting Modeling
,”
ASME J. Eng. Mater. Technol.
,
111
, pp.
210
219
.
6.
Fang
,
N.
,
2003
, “
Slip-Line Modeling of Machining with a Rounded-Edge Tool, Part I: New Model and Theory
,”
J. Mech. Phys. Solids
,
51
, pp.
715
742
.
7.
Fang
,
N.
,
Jawahir
,
I. S.
, and
Oxley
,
P. L. B.
,
2001
, “
A Universal Slip-Line Model With Non-Unique Solutions for Machining With Curled Chip Formation and a Restricted Contact Tool
,”
Int. J. Mech. Sci.
,
43
, pp.
557
580
.
8.
van Luttervelt
,
C. A.
,
Childs
,
T. H. C.
,
Jawahir
,
I. S.
,
Klocke
,
F.
, and
Venuvinod
,
P. K.
,
1998
, “
Present Situation and Future Trends in Modeling of Machining Operations
,”
CIRP Ann.
,
47
, pp.
587
626
.
9.
Kececioglu
,
D.
,
1958
, “
Shear-Strain Rate in Metal Cutting and Its Effects on Shear-Flow Stress
,”
Trans. ASME
,
80
, pp.
158
168
.
10.
Kececioglu
,
D.
,
1958
, “
Shear-Zone Temperature in Metal Cutting and Its Effects on Shear-Flow Stress
,”
Trans. ASME
,
80
, pp.
541
546
.
11.
Kececioglu
,
D.
,
1960
, “
Shear-Zone Size, Compressive Stress, and Shear Strain in Metal-Cutting and Their Effects on Mean Shear-Flow Stress
,”
ASME J. Eng. Ind.
,
82
, pp.
79
86
.
12.
Spaans
,
C.
,
1972
, “
A Treatise on the Streamlines and the Stress, Strain, and Strain Rate Distribution, and on Stability in the Primary Shear Zone in Metal Cutting
,”
ASME J. Eng. Ind.
,
94
, pp.
690
696
.
13.
Murarka
,
P. D.
,
Hinduja
,
S.
, and
Barrow
,
G.
,
1981
, “
Influence of Strain, Strain-Rate and Temperature on the Flow Stress in the Primary Deformation Zone in Metal Cutting
,”
Int. J. Mach. Tool Des. Res.
,
21
, pp.
207
216
.
14.
Saltelli, A., Chan, K., and Scott, E. M., 2000, Sensitivity Analysis, Wiley, Chichester, UK.
15.
Johnson, G. R., and Cook, W. H., 1983, “A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates and High Temperatures,” Proc. of 7th Int. Symp. Ball., Hague, The Netherlands, pp. 541–547.
16.
Jaspers, S. P. F. C., 1999, “Metal Cutting Mechanics and Material Behavior,” Ph.D. thesis, Technical University of Eindhoven, Eindhoven, The Netherlands.
17.
Oxley, P. L. B., 1989, The Mechanics of Machining: An Analytical Approach to Assessing Machinability, Ellis Horwood Limited, Chichester, UK.
18.
Zerilli
,
F. J.
, and
Armstrong
,
R. W.
,
1987
, “
Dislocation-Mechanics-Based Constitutive Relations for Material Dynamics Calculations
,”
J. Appl. Phys.
,
61
, pp.
1816
1825
.
19.
Maekawa
,
K.
,
Shirakashi
,
T.
, and
Usui
,
E.
,
1983
, “
Flow Stress of Low Carbon Steel at High Temperature and Strain Rate (Part 2)–Flow Stress Under Variable Temperature and Variable Strain Rate
,”
Bull. Jpn. Soc. Precis. Eng.
,
17
, pp.
167
172
.
20.
Childs, T. H. C., 1998, “Material Property Needs in Modeling Metal Machining,” Proc. CIRP Int. Work. Model. Mach. Opera., Atlanta, pp. 193–202.
21.
Stevenson
,
M. G.
, and
Oxley
,
P. L. B.
,
1970
–1971, “
An Experimental Investigation of the Influence of Strain-Rate and Temperature on the Flow Stress Properties of a Low Carbon Steel Using a Machining Test
,”
Proc. Inst. Mech. Eng.
,
185
, pp.
741
754
.
22.
Friedman
,
J. H.
,
1991
, “
Multivariate Adaptive Regression Splines
,”
Ann. Stat.
,
19
, pp.
1
67
.
23.
http://www.salford-systems.com
24.
Johnson, G. R., Stryk, R. A., Holmquist, T. J., and Beissel, S. R., 1996, User Instructions for the 1996 Version of the EPIC Code, Alliant Techsystems Inc.
25.
Dannemann, K. A., Anderson, C. E., and Johnson, G. R., 2001, “Modeling the Ballistic Impact Performance of Two Aluminum Alloys,” Proc. Symp. Model. Perf. Eng. Struct. Mate. II, Indianapolis, pp. 63–74.
You do not currently have access to this content.