There is a compelling desire by power generating plants to continue running existing stations and components for several more years, despite many of them have surpassed their design service life. The idea is to avoid premature retirement, on the basis of the so-called design life, because actual useful life could often be well in excess of the design life. This can most readily be achieved by utilizing nondestructive monitoring methods to monitor the degradation of the microstructure, either when a station is down for maintenance or preferably when it is under operation. This study evaluates the use of quasi static hysteresis measurements as a possible procedure to evaluate creep in a 410 martensitic stainless steel, a material utilized in power plant components. The creep rupture tests were conducted at stresses of 100 and 200 MPa, temperatures of 500°C and 620°C, and the times varied between 48 and 120 hours. Following the creep tests all specimens were evaluated magnetically and then metallurgically by optical and scanning electron microscopy, x-ray diffraction (XRD) and by energy dispersive spectroscopy (EDS). The microstructural changes were compared with the magnetization changes. It was determined that the changes in the hysteresis curves were clearly detectable and correlated with the creep-induced damage.

1.
Dooley, R. B., and Viswanathan, R., ed., 1987, “Life Extension Assessment of Fossil Power Plants,” EPRI CS 5208, Electric Power Research Institute, Palo Alto, CA.
2.
Ebine
,
N.
, and
Ara
,
K.
,
1999
,
IEEE Trans. Magn.
,
35
(
5
), p.
3928
3928
.
3.
Dobmann
,
G.
,
Meyendorf
,
N.
, and
Schneider
,
E.
,
1997
, “
Nondestructive Characterization of Materials—A Growing Demand for Describing Damage and Service-Life-Relevant Aging Processes in Plant Components
,”
Nucl. Eng. Des.
,
171
, pp.
95
112
.
4.
Govindaraju
,
M. R.
,
Kaminski
,
D. A.
,
Devine
,
M. K.
,
Biner
,
S. B.
, and
Jiles
,
D. C.
,
1997
, “
Nondestructive Evaluation of Creep Damage in Power-Plant Steam Generators and Pipiyng by Magnetic Measurements
,”
NDT&E Int.
,
30
, pp.
11
17
.
5.
Murty
,
K. L.
,
Mathew
,
M. D.
,
Wang
,
Y.
,
Shah
,
V. N.
, and
Haggag
,
F. M.
,
1998
,
Int. J. Pressure Vessels Piping
,
75
(
11
), p.
831
831
.
6.
Benz
,
A. E. G.
,
1998
,
Mater. Eval.
,
56
(
10
), p.
1215
1215
.
7.
Devine
,
M. K.
,
Jiles
,
D. C.
,
Eichmann
,
A. R.
,
Kaminski
,
D. A.
, and
Hardwick
,
S.
,
1993
, “
Magnescope-Applications in Nondestructive Evaluation
,”
J. Appl. Phys.
,
73
, pp.
5617
5619
.
8.
Wang, M. L., 1998, “Monitoring of Cable Forces Using Magnetoelastic Sensors,” Proceedings of the 2nd US-China Symposium Workshop on Recent Developments and Future Trends of Computational Mechanics in Structural Engineering, May 25–28 Dalian, PRC.
9.
Wang, M. L., and Chen, Z., 2000, “Magnetoelastic Permeability Measurements for Stress Monitoring in Steel Tendons and Cables,” in Proceedings of the 7th Annual Symposium on Smart Structures and Materials, Health Monitoring of the Highway Transportation Infrastructure, March 6–9, CA.
10.
Fabo
,
P.
,
Wang
,
M. L.
,
Chandoga
,
M.
, and
Jarosevic
,
A.
,
1999
, “
New Applications on Magnetoelastic Method
,”
Mech. Eng. (Am. Soc. Mech. Eng.)
,
8–9
, pp.
290
293
.
11.
Wang, M. L., and Chen, Z. L., 2000, “Post-Earthquake Stress Monitoring in Steel Tendons and Cables,” in Supplementary Proceedings of SRRS2, Conference on Seismic Repair and Rehabilitation of Structures 2, March 21–22, pp. 72–91.
12.
Garafalo, F., 1965, Fundamentals of Creep and Creep Rupture in Metals, MacMillan Series in Materials Science, The MacMillan Co., New York.
13.
Bressers, J., ed., 1981, Creep and Fatigue in High Temperature Alloys, Applied Science Publishers, London.
14.
Bernasconi, G., and Piatti, G., ed., 1979, Creep of Engineering Materials and Structures, Applied Science Publishers, London.
15.
Sherby
,
O. D.
, and
Burke
,
P. M.
,
1967
, “
Mechanical Behavior of Crystalline Solids at Elevated Temperatures
,”
Progress Mater. Sci.
,
13
, p.
325
325
.
16.
La
,
E. N.
, and
Andrade
,
C.
,
1910
,
Proc. R. Soc. London, Ser. A
,
A84
, p.
1
1
.
17.
McVetty, P. G., 1934, Mech. Engg., 56, p. 49.
18.
Li
,
J. C.
,
1963
,
Acta Metall.
,
11
, p.
1269
1269
.
19.
Akulov
,
N. S.
,
1964
,
Acta Metall.
,
12
, p.
1195
1195
.
20.
Guy, A. G., 1976, Essentials of Materials Science, McGraw-Hill, Inc., p. 210.
21.
Kim
,
G. S.
,
Indacochea
,
J. E.
, and
Spry
,
T. D.
,
1988
, “
Weldability Studies in CrMoV Turbine Rotor Steel
,”
J. Mater. Eng.
,
10
(
2
), pp.
117
132
.
22.
Kim, G. S., Indacochea, J. E., and Spry, T. D., 1989, “Weldability Studies in HP and IP Turbine Rotor Steels,” EPRI Publication on Weld Repair on High-and Intermediate Pressure Turbine Rotors for Life Extension, GS-6233.
23.
Kim
,
G. S.
,
Indacochea
,
J. E.
, and
Spry
,
T. D.
,
1991
, “
Metallurgical Aspects in Welding CrMoV Turbine Rotor Steels—Part I: Evaluation of the Base Material and HAZ
,”
J. Materials Science and Technology
,
7
(
1
), pp.
42
49
.
24.
Oh
,
Y. K.
, and
Indacochea
,
J. E.
,
1997
, “
Effect of HAZ Softening on Creep Rupture Properties of 1.0Cr-1.0Mo-0.25V Turbine Rotor Steels—Part I: Creep Rupture Life
,”
Welding Journal of the Korean Welding Society
,
15
(
2
), pp.
47
55
.
25.
Indacochea
,
J. E.
, and
Seshadri
,
R.
,
1997
, “
An Analysis of Creep Damage in a Welded Low Alloy Steel Rotor
,”
ASME J. Eng. Mater. Technol.
,
A234–236
, pp.
555
558
.
26.
Indacochea
,
J. E.
,
Wang
,
G.
,
Seshadri
,
R.
, and
Oh
,
Y. K.
,
2000
, “
Creep Rupture Properties of High-Temperature Bainitic Steels After Weld Repair
,”
ASME J. Eng. Mater. Technol.
,
122
, pp.
259
263
.
You do not currently have access to this content.