This paper illustrates the application of a new multiphase material model for simulating distortion and residual stresses in carburized and quenched gear steels. Simulation is focused on thin, metallic strips that are heat treated to introduce a through-thickness carbon gradient. Because the material properties are strongly dependent on the carbon content, quenching causes significant transverse out-of-plane distortion. The material model accounts for a multiphase alloy structure where inelasticity in the individual phases is temperature and rate dependent. The model is fit to an extensive matrix of experimental data for low carbon steels (0.2–0.8 percent) whose transformation kinetics and mechanical response are similar to 4023 and 4620 alloys used in experiments. While residual stress data are limited, reasonable agreement with X-ray diffraction measurements was obtained. Comparisons of transverse deflections predicted numerically showed excellent agreement with those measured experimentally for all five thicknesses reported. Accurate transformation and lattice carburization strains are critical to correctly predict the sense and magnitude of these transverse distortions and in-plane residual stresses.

1.
“Predictive Model & Methodology for Heat Treatment Distortion,” 1997 Phase I Project Summary Report, Constitutive Model Task Team; NCMS Project, January 1994–December 1997.
2.
Lusk
,
M.
,
Krauss
,
G.
, and
Jou
,
H.-J.
,
1995
, “
A Balance Principle Approach for Modeling Phase Transformation Kinetics
,”
Journal de Physique IV
,
C8
, pp.
279
284
.
3.
ABAQUS User’s Manual V5.8, 1998, Hibbitt, Karlsson and Sorensen Pawtucket, RI.
4.
Henriksen
,
M.
,
Larson
,
D. B.
, and
Van Tyne
,
C. J.
,
1992
, “
On the Analysis of Distortion and Residual Stress in Carburized Steels
,”
ASME J. Eng. Mater. Technol.
,
114
, pp.
362
367
.
5.
Larson, D., 1990, “Finite Element Analysis of Residual Stress and Distortion in Forged and Carburized Gear Steel,” M.S. thesis T-3932, Colorado School of Mines, Golden, CO.
6.
Goldak, J. A., 1990, “Modeling Thermal Stresses and Distortions in Welds,” Recent Trends in Welding Science and Technology, S. A. David and M. Vitek, eds., ASM International, Gatlinburg, TN, pp. 71–82.
7.
Dubois, D., Devaux, J., and Leblond, J. B., 1984, “Numerical Simulation of a Welding Operation: Calculation of Residual Stresses and Hydrogen Diffusion,” Proceedings of the 5th International Conference on Pressure Vessel Technology, 2, American Society of Mechanical Engineers, New York, pp. 1210–1239.
8.
Sjo¨stro¨m
,
S.
,
1985
, “
Interactions and Constitutive Models for Calculating Quench Stresses in Steel
,”
Mater. Sci. Technol.
,
1
, pp.
823
829
.
9.
Goldak, J. A., 1986, “Computational Weld Mechanics,” Proceedings of the International Symposium on Computer Modeling of Fabrication Processes and Constitutive Behavior of Metals, Ottawa, Canada.
10.
Oddy
,
A. S.
,
Goldak
,
J. A.
, and
McDill
,
J. M. J.
,
1992
, “
Transformation Plasticity and Residual Stresses in Single-Pass Repair Welds
,”
ASME J. Pressure Vessel Technol.
,
114
, pp.
33
38
.
11.
Josefson
,
B. L.
, and
Karlsson
,
C. T.
,
1992
, “
Transformation Plasticity Effects on Residual Stresses in a Butt-Welded Pipe
,”
ASME J. Pressure Vessel Technol.
,
114
, pp.
376
378
.
12.
Oddy
,
A. S.
,
Goldak
,
J. A.
, and
McDill
,
J. M. J.
,
1990
, “
Numerical Analysis of Transformation Plasticity in 3D Finite Element Analysis of Welds
,”
Eur. J. Mech. A/Solids
,
9
(
3
), pp.
253
263
.
13.
Goldak, J. A., 1991, “Coupling Heat Transfer, Microstructure Evolution and Thermal Stress Analysis in Weld Mechanics,” Proceedings of the IUTAM Symposium, Lulea, Sweden, 1–31.
14.
Bammann, D. J., Chiesa, M. L., and Johnson, G. C., 1996, “Modeling Large Deformation and Failure in Manufacturing Processes,” in Proceedings of the 19th International Congress of Theoretical and Applied Mechanics, Tatsumi, Wannabe and Kambe, eds., Kyoto, Japan, pp. 359–376.
15.
Bammann, D. J., and Ortega, A. R., 1993, “The Influence of the Bauschinger Effect and Yield Definition on the Modeling of Welding Processes,” Welding and Advanced Solidification Processes-VI, T. S. Piwonka, V. Voller, and L. Katgerman, eds., The Minerals, Metals & Materials Society, Warrendale, PA, pp. 543–551.
16.
Lathrop, J. F., 1997, “BFIT—A Program to Analyze and Fit the Sandia Plasticity (BAMMANN) Model Parameters to Experimental Data,” SAND97-8218.
17.
Leblond
,
J. B.
,
Mottet
,
G.
, and
Devaux
,
J. C.
,
1986
, “
A Theoretical and Numerical Approach to the Plastic Behavior of Steels During Phase Transformations: I—Derivation of General Relations
,”
J. Mech. Phys. Solids
,
34
(
4
), pp.
395
409
.
18.
Leblond
,
J. B.
,
Mottet
,
G.
, and
Devaux
,
J. C.
,
1986
, “
A Theoretical and Numerical Approach to the Plastic Behavior of Steels During Phase Transformations: II—Study of Classical Plasticity for Ideal-Plastic Phases
,”
J. Mech. Phys. Solids
,
34
(
4
), pp.
411
432
.
19.
Leblond
,
J. B.
,
Devaux
,
J.
, and
Devaux
,
J. C.
,
1989
, “
Mathematical Modeling of Transformation Plasticity in Steels I: Case of Ideal-Plastic Phases
,”
Int. J. Plast.
,
5
, pp.
551
572
.
20.
Leblond
,
J. B.
,
Devaux
,
J.
, and
Devaux
,
J. C.
,
1989
, “
Mathematical Modeling of Transformation Plasticity in Steels II: Coupling With Strain Hardening Phenomena
,”
Int. J. Plast.
,
5
, pp.
573
591
.
21.
Koistinen
,
D.
, and
Marburger
,
R.
,
1959
,
Acta Metall.
,
7
, p.
59
59
.
22.
Skrotzki
,
B.
,
1991
,
J. de Physique IV Colloque
,
C8
(
1
), p.
367
367
.
23.
Grange
,
R.
, and
Stewart
,
H.
,
1946
,
Trans. AIME
,
167
, p.
467
467
.
24.
Bammann, D., Prantil, V., Kumar, A., Lathrop, J., Mosher, D., Lusk, M., Jou, H.-J., Krauss, G., Elliott, W., 1996, Proceedings of the 2nd International Conference on Quenching and the Control of Distortion, G. Totten, M. Howes, S. Sjostrom, and K. Funatani, eds., ASM, p. 367.
25.
Andrews
,
K. W.
,
1965
, “
Empirical Formulae for the Calculation of Some Transformation Temperatures
,”
J. Iron Steel Inst., London
,
pp.
721
727
.
You do not currently have access to this content.