High resolution experimental characterization of material stretch and rotation fields in relatively fine-grained polycrystals has been limited, inhibiting direct comparison with predictions of crystal plasticity theory. In this study, micron scale grids used more commonly in etching of substrates for microelectronic circuits were deposited on specimens of Oxygen Free High Conductivity Copper (OFHC Cu) subsequently subjected to uniaxial compressive deformations to effective strain levels up to unity. Material stretch and rotation fields were assessed for fields of view encompassing on the order of 20 grains. Some rather striking features emerge, including the apparent relative lack of deformation in regions sized on the order of large grains, and the apparent concentration of stretch and rotation in bands surrounding these relatively undeformed areas. Comparisons are drawn with results of 3D crystal plasticity calculations performed on digitized grain structures that conform to representative microstructures in terms of initial grain size and shape distributions. The crystal plasticity simulations predict regions of relatively large rotation and relatively localized stretch traversing multiple grains. The numerical solutions also exhibit slightly higher local stresses in the vicinity of grain boundaries and triple points than in grain interiors, a phenomenon attributed to local lattice misorientation among neighboring grains. However, the crystal plasticity calculations do not, in an average sense, predict larger-than-average maximum stretch or rotation in the grain boundary regions. The numerical solutions are also quite sensitive to initial lattice orientations assigned to the grains. Comments are made regarding the segmentation of slip within the grains and its implications for modeling, based upon direct comparison of results from experiments and simulations.

1.
Kuhlmann-Wilsdorf
,
D.
, and
Hansen
,
N.
,
1991
, “
Geometrically Necessary, Incidental, and Subgrain Boundaries
,”
Scr. Metall. Mater.
,
25
, pp.
1557
1562
.
2.
Bay
,
B.
,
Hansen
,
N.
,
Hughes
,
D. A.
, and
Kuhlmann-Wilsdorf
,
D.
,
1992
, “
Evolution of FCC Deformation Structures in Polyslip
,”
Acta Metall. Mater.
,
40
, pp.
205
219
.
3.
Hughes
,
D. A.
,
Liu
,
Q.
,
Chrzan
,
D. C.
, and
Hansen
,
N.
,
1997
, “
Scaling of Microstructural Parameters: Misorientations of Deformation Induced Boundaries
,”
Acta Mater.
,
45
, pp.
105
112
.
4.
Kuhlmann-Wilsdorf
,
D.
,
1999
, “
The Theory of Dislocation-Based Crystal Plasticity
,”
Philos. Mag.
,
79
, pp.
955
1008
.
5.
Wilmanski, K., 1991, “Large Elastoplastic Deformation of Two-Phase Alloys-Structural Continuous Model,” Recent Developments in Micromechanics, D. R. Axelrad and W. Muschik, eds., Springer-Verlag, Toronto, pp. 84–96.
6.
Driver
,
J. H.
,
1994
, “
Deformation Texture Formation from Single Crystals
,”
Mater. Sci. Forum
,
157–162
, pp.
585
596
.
7.
Leffers
,
T.
,
1994
, “
Lattice Rotations During Plastic Deformation with Grain Subdivision
,”
Mater. Sci. Forum
,
157–162
, pp.
1815
1820
.
8.
Chang
,
Y. W.
, and
Asaro
,
R. J.
,
1981
, “
An Experimental Study of Shear Localization in Aluminum-Copper Single Crystals
,”
Acta Metall.
,
29
, pp.
241
257
.
9.
Asaro
,
R. J.
,
1985
, “
Material Modeling and Failure Modes in Metal Plasticity
,”
Mech. Mater.
,
4
, pp.
343
373
.
10.
Harren
,
S. V.
,
De`ve
,
H. E.
, and
Asaro
,
R. J.
,
1988
, “
Shear Band Formation in Plane Strain Compression
,”
Acta Metall.
,
36
(
9
), pp.
2435
2480
.
11.
Makarov
,
P. V.
,
1992
, “
Microdynamic Theory of Plasticity and Failure of Structurally Inhomogeneous Media
,”
Russ. Phys. J.
,
35
(
4
), pp.
334
346
.
12.
Mescheryakov
,
Y. I.
, and
Atroshenko
,
S. A.
,
1992
, “
Multiscale Rotations in Dynamically Deformed Solids
,”
Int. J. Solids Struct.
,
29
, pp.
2761
2778
.
13.
Makarov
,
P. V.
,
Smolin
,
I. Y.
, and
Prokopinski
,
I. P.
,
1998
, “
Localized Plastic Strain in Polycrystalline Materials with Hole and Notches
,”
Theor. Appl. Fract. Mech.
,
29
, pp.
11
20
.
14.
Panin
,
V. E.
,
1998
, “
Overview on Mesomechanics of Plastic Deformation and Fracture of Solids
,”
Theor. Appl. Fract. Mech.
,
30
, pp.
1
11
.
15.
Panin
,
V. E.
,
Deryugin
,
Y. Y.
,
Derevyagina
,
L. S.
,
Lotkov
,
A. I.
, and
Suvorov
,
B. I.
,
1998
, “
Plastic Deformation and Fracture of Polycrystalline Ni-Ti with Stress Concentrators of Different Scales
,”
Theor. Appl. Fract. Mech.
,
30
, pp.
19
26
.
16.
Cherepanov
,
O. I.
,
Smolin
,
I. Y.
,
Stefanov
,
Y. P.
, and
Makarov
,
P. V.
,
1999
, “
Investigation of Influence of Internal Structure of Heterogeneous Materials on Plastic Flow and Fracture
,”
Comput. Mater. Sci.
,
16
, pp.
25
31
.
17.
Zelin
,
M. G.
, and
Mukherjee
,
A. K.
,
1993
, “
Microstructural Aspects of Non-homogeneity of Grain-boundary Sliding
,”
J. Mater. Sci.
,
28
, pp.
6767
6773
.
18.
Zelin
,
M. G.
, and
Mukherjee
,
A. K.
,
1994
, “
Measurements of Spacing of Sliding Grain Boundaries
,”
J. Mater. Sci.
,
29
, pp.
3607
3611
.
19.
Zelin
,
M. G.
,
Krasilnikov
,
N. A.
,
Valiev
,
R. Z.
,
Grabski
,
H. S.
,
Yang
,
H. S.
, and
Mukherjee
,
A. K.
,
1994
, “
On the Microstructural Aspects of the Nonhomogeneity of Superplastic Deformation at the Level of Grain Groups
,”
Acta Metall. Mater.
,
42
, pp.
119
126
.
20.
Morral
,
J. E.
, and
Ashby
,
M. F.
,
1974
, “
Dislocated Cellular Structures
,”
Acta Metall.
,
22
, pp.
567
575
.
21.
Watanabe
,
O.
,
Zbib
,
H. M.
, and
Takenouchi
,
E.
,
1988
, “
Crystal Plasticity: Micro-shear Banding in Polycrystals Using Voronoi Tessellation
,”
J. Colour Soc.
,
14
, pp.
771
788
.
22.
Harren
,
S. V.
, and
Asaro
,
R. J.
,
1989
, “
Nonuniform Deformations in Polycrystals and Aspects of the Validity of the Taylor Model
,”
J. Mech. Phys. Solids
,
37
, pp.
191
232
.
23.
Havlicek
,
F.
,
Tokuda
,
M.
,
Hino
,
S.
, and
Kratochvil
,
J.
,
1992
, “
Finite Element Method Analysis of Micro-Macro Transition in Polycrystalline Plasticity
,”
J. Colour Soc.
,
8
, pp.
477
499
.
24.
Harder
,
J.
,
1999
, “
A Crystallographic Model for the Study of Local Deformation Processes in Polycrystals
,”
Int. J. Plast.
,
15
, pp.
605
624
.
25.
Diepolder
,
W.
,
Mannl
,
V.
, and
Mannl
,
V.
,
1991
, “
The Cosserat Continuum: A Model for Grain Rotations in Metals?
,”
Int. J. Plast.
,
7
, pp.
313
328
.
26.
Acharya
,
A.
, and
Bassani
,
J. L.
,
2000
, “
Lattice Incompatibility and a Gradient Theory of Crystal Plasticity
,”
J. Mech. Phys. Solids
,
48
, pp.
1565
1595
.
27.
Mughrabi
,
H.
,
1983
, “
Dislocation Wall and Cell Structures and Long-Range Internal Stresses in Deformed Metal Crystals
,”
Acta Metall.
,
31
(
9
), pp.
1367
1379
.
28.
Berveiller
,
M.
,
Muller
,
D.
, and
Kratochvil
,
J.
,
1993
, “
Nonlocal Versus Local Elastoplastic Behavior of Heterogeneous Materials
,”
Int. J. Plast.
9
, pp.
633
652
.
29.
Butler
,
G. C.
, and
McDowell
,
D. L.
,
1998
, “
Polycrystal Constraint and Grain Subdivision
,”
Int. J. Plast.
,
14
(
8
), pp.
703
717
.
30.
Horstemeyer
,
M. F.
, and
McDowell
,
D. L.
,
1998
, “
Modeling Effects of Dislocation Substructure in Polycrystal Elastoviscoplasticity
,”
Mech. Mater.
,
27
, pp.
145
163
.
31.
McGinty
,
R. D.
, and
McDowell
,
D. L.
,
1999
, “
Multi-scale Polycrystal Plasticity
,”
ASME J. Eng. Mater. Technol.
,
121
, pp.
203
209
.
32.
Hayashi, I., Yamazaki, K., and Yamada, N., 1975, “Study on Inhomogeneous Deformation in the Grains of Polycrystalline α-iron—Measurements of Plastic Strain in the Grains by the Grid Line Technique,” Society of Materials. Science, Japan, The 18th Japan Congress on Materials Research-Metallic Materials, pp. 8–14.
33.
Tong
,
W.
,
1991
, “
Detection of Plastic Deformation Patterns in a Binary Aluminum Alloy
,”
Exp. Mech.
,
37
, pp.
452
459
.
34.
Hughes
,
D.
, and
Hansen
,
N.
,
1991
, “
Microstructural Evolution in Nickel During Rolling and Torsion
,”
Mater. Sci. Technol.
,
7
, pp.
544
553
.
35.
Vendroux
,
G.
, and
Knauss
,
W.
,
1998
, “
Submicron Deformation Field Measurements: Part 1. Developing a Digital Scanning Tunneling Microscope
,”
Exp. Mech.
,
38
, pp.
18
23
.
36.
Dally, J., and Riley, W., 1978, Experimental Stress Analysis, McGraw-Hill, New York.
37.
Du¨rr
,
R.
,
1991
, “
Displacement Field Analysis: Calculation of Distortion Measures From Displacement Maps
,”
Ultramicroscopy
,
38
, pp.
135
141
.
38.
Parks
,
V.
,
1982
, “
Strain Measurement Using Grids
,”
Opt. Eng.
,
21
, pp.
633
639
.
39.
Takeda
,
N.
,
1998
, “
Evaluation of Microscopic Deformation in CFRP Laminates with Delamination by Micro-grid Methods
,”
J. Compos. Mater.
,
32
, pp.
83
100
.
40.
Sevenhuijsen
,
P.
,
Bremand
,
F.
,
1993
, “
Current Trends in Obtaining Deformation Data from Grids
,”
Exp. Tech.
,
22
, No.
3
, pp.
22
26
.
41.
Farmer
,
L.
, and
Fowle
,
R.
,
1979
, “
An Experimental Procedure for Studying the Flow in Plane Strain Extrusion
,”
Int. J. Mech. Sci.
,
21
(
10
), pp.
599
608
.
42.
Goldrein
,
H.
,
Palmer
,
S.
, and
Huntley
,
J.
,
1995
, “
Automated Fine Grid Technique for Measurement of Large-Strain Deformation Maps
,”
Opt. Lasers Eng.
,
23
, pp.
305
318
.
43.
Wolak
,
J.
, and
Parks
,
V.
,
1974
, “
Evaluation of Large Strains in Industrial Applications
,”
J. Test. Eval.
,
2
, pp.
533
540
.
44.
Durelli, A., and Parks, V., 1970, Moire´ Analysis of Strain, Prentice-Hall, New Jersey.
45.
Peters
,
W.
, and
Ranson
,
W.
,
1982
, “
Digital Imaging Techniques in Experimental Stress Analysis
,”
Opt. Eng.
,
21
, pp.
427
431
.
46.
Graham, S., 1995, “Mechanical Behavior of FCC Polycrystals Under Complex Loading at Finite Strain,” M.S. thesis, GWW School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA.
47.
Christodoulou
,
N.
, and
Jonas
,
J.
,
1985
, “
Flow Localization in OFHC Cu and 99.9% Al
,”
Acta Metall.
,
33
, pp.
719
730
.
48.
Sowerby
,
R.
,
Duncan
,
J.
, and
Chu
,
E.
,
1986
, “
The Modeling of Sheet Metal Stampings
,”
Int. J. Mech. Sci.
,
28
, pp.
415
430
.
49.
Boyce, D., 1999, LASI6 v6.1.6.0, LASI Integrated Circuit CAD for Windows 95, 98, NT4, 2000 and ME.
50.
Ohki, H., Nakazawa, H., Kosaka, Y., Sato, H., Asari, T., and Isobe, M., 1987, “Fabrication of Fine and Smooth Curved Features by E-beam Lithography System,” Microelectronic Engineering, Proceedings of the International Conference on Microlithography, Vol. 6, No. 1–4, pp. 207–212.
51.
Asaro
,
R. J.
,
1983
, “
Crystal Plasticity
,”
ASME J. Appl. Mech.
,
50
, pp.
921
934
.
52.
Bammann
,
D. J.
, and
Johnson
,
G. C.
,
1987
, “
On the Kinematics of Finite-deformation Plasticity
,”
Acta Mech.
,
70
, pp.
1
13
.
53.
Horstemeyer
,
M. F.
,
McDowell
,
D. L.
, and
McGinty
,
R. D.
,
1999
, “
Design of Experiments for Constitutive Model Selection: Application to Polycrystal Elastoviscoplasticity
,”
Microgravity Sci. Technol.
,
7
, pp.
253
273
.
54.
ABAQUS, 1998, version 5.8–14, Hibbitt, Karlsson, & Sorensen, Inc., Pawtucket, RI.
55.
P. J. Armstrong, and C. O. Frederick, 1966, CEGB Report, RD/B/N, p. 731.
56.
Lacy
,
T. E.
,
McDowell
,
D. L.
, and
Talreja
,
R.
,
1999
, “
Gradient Concepts for Evolution of Damage
,”
Mech. Mater.
,
31
, pp.
831
860
.
57.
Nagtegaal
,
J. C.
,
Parks
,
D. M.
, and
Rice
,
J. R.
,
1974
, “
On Numerically Accurate Finite Element Solutions in the Fully Plastic Range
,”
Comput. Methods Appl. Mech. Eng.
,
4
, pp.
153
177
.
58.
Humphreys
,
F. J.
,
2001
, “
Grain and Subgrain Characterization by Electron Backscatter Diffraction
,”
J. Mater. Sci.
,
36
, pp.
3833
3854
.
59.
Davis, J. R., ed., 1998, ASM Metals Handbook, Desk Edition, Second Edition, ASM International, Materials Park, OH.
60.
Barbe
,
F.
,
Forest
,
S.
, and
Cailletaud
,
G.
,
2001
, “
Intergranular and Intragranular Behavior of Polycrystalline Aggregates. Part 2: Results
,”
Int. J. Plast.
,
17
, pp.
537
563
.
61.
Cailletaud, G., 2001, personal communication.
62.
Sarma
,
G.
,
Radhakrishnan
,
B.
, and
Zacharia
,
T.
,
1999
, “
Modelling the Deformation of Face Centered Cubic Crystals to Study the Effect of Slip on {110} Planes
,”
Modell. Simul. Mater. Sci. Eng.
,
7
, pp.
1025
1043
.
63.
Bhattacharyya
,
A.
,
El-Danaf
,
E.
,
Kalidindi
,
S. R.
, and
Doherty
,
R. D.
,
2001
, “
Evolution of Grain-scale Microstructure During Large Strain Simple Compression of Polycrystalline Aluminum with Quasi-columnar Grains: OIM Measurements and Numerical Simulations
,”
Int. J. Plast.
,
17
, pp.
861
883
.
64.
Ziegenbein
,
A.
,
Neuha¨user
,
H.
,
Thesing
,
J.
,
Ritter
,
R.
,
Wittich
,
H.
,
Steck
,
E.
,
Springer
,
F.
, and
Schwarzer
,
R. A.
,
1998
, “
Investigations on Local Plasticity of CuAl Polycrystals by in situ Observations and FEM Simulations
,”
Mater. Sci. Forum
,
273–275
, pp.
363
368
.
65.
Anand
,
L.
, and
Kalidindi
,
S. R.
,
1994
, “
The Process of Shear Band Formation in Plane Strain Compression of FCC Metals: Effects of Crystallographic Texture
,”
Mech. Mater.
,
17
, pp.
223
243
.
66.
Ashmawi
,
W. M.
, and
Zikry
,
M. A.
,
2000
, “
Effects of Grain Boundaries and Dislocation Density Evolution on Large Strain Deformation Modes in FCC Crystalline Metals
,”
J. Comput.-Aided Mater. Des.
,
7
, pp.
55
62
.
67.
Shen
,
Y.-L.
,
Li
,
W.
,
Sulsky
,
D. L.
, and
Schreyer
,
H. L.
,
2000
, “
Localization of Plastic Deformation Along Grain Boundaries in a Hardening Material
,”
Int. J. Mech. Sci.
,
42
, pp.
2167
2189
.
You do not currently have access to this content.