The high strain tensile deformation of open-cell foams is analyzed, using a Kelvin foam lattice model. The stretching, bending, and twisting of elastic cell edges is analyzed, and the deformed cell shapes predicted. The stress-strain relation and Poisson’s ratio are predicted for strains up to 40% for tension in the [100] and [111] directions of the BCC lattice. The latter prediction is closest to stress-strain curves for polyurethane foams, especially when the cell shape anisotropy is taken into account. The change from edge bending to extension as the main deformation mechanisms, for strains exceeding 20% increases the slope of the stress-strain curve. A comparison is made with irregular cell structure models. [S0094-4289(00)01001-X]
Issue Section:
Technical Papers
1.
Kelvin
, Lord
, (Thompson
, W.
), 1887
, “On the Division of Space with Minimum Partitional Area
,” Philos. Mag.
, 24
, pp. 503
–514
.2.
Zhu
, H. X.
, Mills
, N. J.
, and Knott
, J. F.
, 1997
, “Analysis of the High Strain Compression of Open-Cell Foams
,” J. Mech. Phys. Solids
, 45
, pp. 1875
–1904
.3.
Warren
, W. E.
, and Kraynik
, A. M.
, 1997
, “Linear Elastic Behavior of a Low-Density Kelvin Foam with Open Cells
,” ASME J. Appl. Mech.
, 64
, pp. 787
–794
.4.
Gent
, A. N.
, and Thomas
, A. G.
, 1959
, “The Deformation of Foamed Elastic Materials
,” J. Appl. Polym. Sci.
, 1
, pp. 107
–113
.5.
Lederman
, J. M.
, 1971
, “The Prediction of the Tensile Properties of Flexible Foams
,” J. Appl. Polym. Sci.
, 45
, pp. 693
–703
.6.
Ko
, W. L.
, 1965
, “Deformations of Foamed Elastomers
,” J. Cell. Plast.
, 1
, pp. 45
–50
.1.
Dement’ev
, A. G.
, and Tarakanov
, O. G.
, 1970
, “Model Analysis of Plastics Foams of the Polyurethane Type
,” Mekh. Polim.
, 6
, pp. 859
–865
; 2.
[
Polym. Mech.
, 6
, pp. 744
–749
]. 1.
Warren
, W. E.
, and Kraynik
, A. M.
, 1991
, “The Non-Linear Elastic Behavior of Open-Cell Foams
,” ASME J. Appl. Mech.
, 58
, pp. 376
–3811
.2.
Pajon, M., Backacha, M. et al., 1996, “Modelling of PU Foam Behavior-Applications in the Field of Automotive Seats,” SAE SP-1155, paper 960513.
3.
El-Ratal
, W. H.
, and Mallick
, P. K.
, 1996
, “Elastic Response of Flexible Polyurethane Foams in Uniaxial Tension
,” ASME J. Eng. Mater. Technol.
, 118
, pp. 157
–161
.4.
Dawson
, J. R.
and Shortall
, J. B.
, 1982
, “The Microstructure of Rigid Polyurethane Foam
,” J. Mater. Sci.
, 17
, pp. 220
–224
.5.
Zhu
, H.
, Knott
, J. P.
, and Mills
, N. J.
, 1997
, “The Elastic Constants of Open Cell Foams Having Tetrakaidecahedral Cells
,” J. Mech. Phys. Solids
, 45
, pp. 319
–343
.6.
Phelan
, R.
, Weaire
, D.
, Peters
, E. A. J. F.
, and Verbist
, G.
, 1996
, “The Conductivity of a Foam
,” J. Phys.: Condens. Matter
, 8
, pp. L475–L482
L475–L482
.7.
Warren
, W. E.
, Neilsen
, M. K.
, and Kraynik
, A. M.
, 1997
, “Torsional Rigidity of a Plateau Border
,” Mech. Res. Commun.
, 24
, pp. 667
–672
.8.
Schulmeister, V., 1998, “Modelling of the Mechanical Properties of Low Density Polymer Foams,” Ph.D. thesis, Technical University of Delfit.
9.
Mills
, N. J.
, and Gilchrist
, A.
, 1997
, “The Effect of Heat Transfer and Poisson’s Ratio on the Compressive Response of Closed Cell Polymer Foams
,” Cell. Polym.
, 16
, pp. 87
–119
10.
Kraynik, A. M., Neilsen, M. K., Reinhelt, R. A., and Warren, W. E., 1999, “Foam Micromechanics,” NATO Adv. Sci. Inst. Series E: Appl. Sci., Vol. 354, Foams and Emulsions, N. Rivier and J. F. Sadok, eds., Kluwer, pp. 187–204.
11.
Zhu
, H. X.
, and Mills
, N. J.
, 1999
, “Analysis of Creep in Open-Cell Foams
,” J. Mech. Phys. Solids
, 47
, pp. 1437
–1457
. Copyright © 2000
by ASME
You do not currently have access to this content.