This paper describes studies of the tension-torsion multiaxial low cycle fatigue of CMSX-2 Ni-base single crystal superalloy. Tension-torsion low cycle fatigue tests were carried out at 1173K using CMSX-2 hollow cylinder specimens aligned with the {001} axis. Several multiaxial strain and stress parameters were applied to the experimental data to examine the suitability of the parameters to life prediction. All the strain parameters proposed so far gave a large scatter of the data correlation. Discrepant data correlation with the strain parameters resulted from the anisotropic stress response due to the crystallographic texture. Larger Mises equivalent stress was applied in torsion tests than in tension tests at the same Mises strain. However, Mises stress and the equivalent stress based on crack opening displacement gave a satisfactory data correlation. This study developed a new equivalent strain, taking account of the anisotropy of the elastic constants, which correlates the multiaxial low cycle fatigue data with a small scatter.

1.
Gabb
T. P.
,
Gayda
J.
, and
Miner
R. V.
,
1986
, “
Orientation and Temperature Dependence of Some Mechanical Properties of the Single-Crystal Nickel-Base Superalloy Rene´ N4: Part II. Low Cycle Fatigue Behavior
,”
Metall. Trans.
, Vol.
17A
, pp.
497
505
.
2.
Gemma, A. E., Langer, B. S., and Leverant, G. R., 1976, “Thermomechanical Fatigue Crack Propagation in an Anisotropic (Directionally Solidified) Nickel-Base Superalloy,” ASTM STP 612, pp. 199–213.
3.
Ghosh
R. N.
,
Curtis
R. V.
, and
McLean
M.
,
1990
, “
Creep Deformation of Single Crystal Superalloys-Modelling the Crystallographic Anisotropy
,”
Acta Metall. Mater.
, Vol.
38
, pp.
1977
1992
.
4.
Hasebe
T.
,
Sakane
M.
, and
Ohnami
M.
,
1992
, “
High Temperature Low Cycle Fatigue and Cyclic Constitutive Relation of MAR-M247LC Directionally Solidified Superalloy
,”
ASME JOURNAL OF ENGINEERING MATERIALS AND TECHNOLOGY
, Vol.
114
, pp.
162
167
.
5.
Hattori
H.
,
Nakagawa
G. Y.
, and
Ohtomo
A.
,
1984
, “
Effect of Orientation on High Temperature Low-cycle Fatigue Properties of Directionally Solidified Mar-M 247
,”
Trans. ISIJ
, Vol.
24
, p.
B–163
B–163
.
6.
Hirose, T., Sakane, M., Ohnami, M., Fujiyama, K., and Okabe, N., 1993, “Multiaxial Creep-Fatigue for Rene´80H DS Superalloy at Elevated Temperature,” Proceedings of the 71st JSME Fall Annual Meeting, pp. 485–487.
7.
Hopgood
A. A.
, and
Martin
J. W.
,
1986
, “
The Creep Behavior of a Nickel-based Single-crystal Superalloy
,”
Mater. Sci. Eng.
, Vol.
82
, pp.
27
36
.
8.
Itoh
T.
,
Sakane
M.
, and
Ohnami
M.
,
1994
, “
High Temperature Multiaxial Low Cycle Fatigue of Cruciform Specimen
,”
ASME JOURNAL OF ENGINEERING MATERIALS AND TECHNOLOGY
, Vol.
116
, No.
1
, pp.
90
98
.
9.
Lohr
R. D.
, and
Ellison
E. G.
,
1980
, “
A Simple Theory for Low Cycle Multiaxial Fatigue
,”
Fatigue Eng. Mater. Struct.
, Vol.
3
, No.
1
, pp.
1
17
.
10.
MacKay
R. A.
, and
Maier
R. D.
,
1982
, “
The Influence of Orientation on the Stress Rupture Properties of Nickel-Base Superalloy Single Crystals
,”
Metall. Trans.
, Vol.
A13
, pp.
1747
1754
.
11.
Me´ric
L.
,
Poubanne
P.
, and
Cailletaud
G.
,
1991
, “
Single Crystal Modeling for Structural Calculations: Part 1-Model Presentation
,”
ASME JOURNAL OF ENGINEERING MATERIALS AND TECHNOLOGY
, Vol.
113
, pp.
162
170
.
12.
Me´ric
L.
, and
Cailletaud
G.
,
1991
, “
Single Crystal Modeling for Structural Calculations: Part 2-Finite Element Implementation
,”
ASME JOURNAL OF ENGINEERING MATERIALS AND TECHNOLOGY
, Vol.
113
, pp.
171
182
.
13.
Nouailhas, D., Pacou, D., Cailletaud, G., Hanriot, F., and Re´my, L., 1993, “Experimental Study of the Anisotropic Behavior of the CMSX-2 Single-Crystal Superalloy Under Tension-Torsion Loadings,” ASTM STP-1191, pp. 244–258.
14.
Ohnami
M.
, and
Hamada
N.
,
1981
, “
Crack Propagation Behavior of Biaxial Low-Cycle Fatigue at Elevated Temperature, —Effect of the Cyclic Principal Stressing in Parallel with the Fatigue Crack and the Rotation of the Principal Stress Axes
,”
J. Soc. Mater. Sci., Japan
, Vol.
30
, No.
335
, pp.
822
828
.
15.
Ohta
Y.
,
Hattori
H.
,
Murakami
K.
,
Nakagawa
Y.
, and
Ohtomo
A.
,
1984
, “
Creep Properties of Directionally Solidified Mar-M 247
,”
Trans. ISIJ
, Vol.
24
, p.
B–164
B–164
.
16.
Sakane
M.
,
Ohnami
M.
, and
Sawada
M.
,
1987
, “
Fracture Modes and Low Cycle Biaxial Fatigue Life at Elevated Temperature
,”
ASME JOURNAL OF ENGINEERING MATERIALS AND TECHNOLOGY
, Vol.
109
, No.
3
, pp.
236
243
.
17.
Sakane
M.
,
Ohnami
M.
, and
Sawada
M.
,
1991
, “
Biaxial Low Cycle Fatigue of Unaged and Aged 1Cr-1Mo-1/4V steel at Elevated Temperature
,”
ASME JOURNAL OF ENGINEERING MATERIALS AND TECHNOLOGY
, Vol.
113
, No.
2
, pp.
244
253
.
18.
Shimomizuki, K., Shirafuji, N., Sakane, M., and Ohnami, M., 1991, “High-Temperature Multiaxial Low Cycle Fatigue of Mar-M247LC Directionally Solidified Ni base Superalloy,” Proceedings of the 29th JSMS Symposium on Strength of Materials at High Temperature, pp. 21–25.
19.
Smith, D. J., Li, S. X., and Ellison, E. G., 1994, “High Temperature Combined Fatigue and Creep Behavior of Polycrystaline and Single Crystal Nickel Base Superalloys,” ASME Material Durability/Life Prediction Modeling: Materials for the 21st Century, pp. 59–67.
20.
Wright, P. K., and Anderson, A. F., 1980, “The Influence of Orientation on the Fatigue of Directionally Solidified Superalloys,” Superalloys 1980, Proceedings of the 4th International Symposium on Superalloys, pp. 689–698.
This content is only available via PDF.
You do not currently have access to this content.