A rational analysis of a number of stress-strain curves for a commercial-purity aluminum has been carried out in order to derive a set of constitutive equations capable of describing the flow stress of the material in terms of the applied strain, rate of straining, and deformation temperature. Such an analysis combines the exponential saturation strain-hardening function earlier proposed by Voce (1948; 1955) with the exponential relationship developed from steady-state creep data at high stresses, and considers the existence of two different regimes of work-hardening. The proposed formalism requires only the use of seven material constants which include the temperature-dependent shear modulus, the activation energy for self-diffusion, one pre-exponential factor, and four stress sensitivity parameters of the strain rate. A satisfactory correlation has been obtained between the experimental values of the flow stress and those predicted for the model, which enables it to be used in conjunction with any algorithm based on finite differences methods or finite elements codes to simulate hot-working operations carried out in this material.

1.
Andersen, S. I., Bilde-Sorensen, J. B., Hansen, N., Juul Jensen, D., Leffers, T., Lilholt, H., Lorentzen, T., Pedersen, O. B., and Ralph, B., eds., 1992, “Modelling of Plastic Deformation and its Engineering Applications,” Proc. 13th Riso̸ Internal. Symp. on Materials Science, Riso̸ National Laboratory, Roskilde, Denmark.
2.
Beynon, J. H., Brown, P. R., Mizban, S. I., Ponter, A. R. S., and Sellars, C. M., 1986, Proc. Internal. Conf. Numiform 86, K. Mattiasson, A. A. Balkema, et al., eds., pp. 213–218.
3.
Hockett
J. E.
,
1987
,
Trans. Met. Soc. AIME
, Vol.
239
, pp.
969
976
.
4.
Jonas
J. J.
,
Sellars
C. M.
, and
Tegart
W. J. McG.
,
1969
,
Met. Rev.
, Vol.
14
, (
130
), pp.
1
24
.
5.
Kocks
U. F.
,
1976
,
ASME JOURNAL OF ENGINEERING MATERIALS AND TECHNOLOGY
, Vol.
98
, pp.
76
85
.
6.
Raghunathan, N., and Sheppard, T., 1991, “Hot Deformation of Aluminum Alloys,” T. G. Langdon, H. D. Merchant, J. G. Morris and M. A. Zaidi, eds., The Minerals, Metals and Materials Society, Warrendale, PA, pp. 441–472.
7.
Puchi, E. S., Beynon, J., and Sellars, C. M., 1988, Proc. Internat. Conference on Physical Metallurgy of Thermomechanical Processing of Steels and Other Metals, Thermec-88, Iron and Steel Inst. Japan, Tokyo, Japan, pp. 572–579.
8.
Ravichandran
N.
, and
Prasad
Y. V. R. K.
,
1991
,
Metall. Trans. A
, Vol.
22A
, pp.
2339
2348
.
9.
Sellars
C. M.
, and
Tegart
W. J. McG.
,
1972
,
Int. Met. Rev.
, Vol.
17
, (
158
), pp.
1
24
.
10.
Sellars
C. M.
,
1990
,
Mat. Sci. Technol.
, Vol.
6
, pp.
1072
1081
.
11.
Sellars, C. M., 1993, “Thermomechanical Processing of Aluminium Alloys,” Lecture for the 2nd Internat. Summer School on Aluminium Alloy Technology, Trondheim, Norway, June 28–July 2.
12.
Sheppard
T.
, and
Wright
D. S.
,
1976
,
Met. Technol.
, Vol.
3
, p.
454
454
.
13.
Sherby
O. D.
,
Lytton
J. L.
, and
Dorn
J. E.
,
1957
,
Acta Metall.
, Vol.
5
, pp.
219
227
.
14.
Tutcher
M. G.
, and
Sheppard
T.
,
1980
,
Met. Technol.
, Vol.
7
, pp.
488
493
.
15.
Urcola
J. J.
, and
Sellars
C. M.
,
1987
,
Acta Metall.
, Vol.
35
, pp.
2637
2647
.
16.
Urcola
J. J.
, and
Sellars
C. M.
,
1987
,
Acta Metall.
, Vol.
35
, pp.
2649
2657
.
17.
Voce
E.
,
1948
,
J. Inst. Met.
, Vol.
74
, pp.
537
562
.
18.
Voce
E.
,
1955
,
Metallurgia
, Vol.
51
, pp.
219
226
.
This content is only available via PDF.
You do not currently have access to this content.