Observations of isothermal fatigue, isothermal fatigue with superimposed load hold times, and thermomechanical fatigue (TMF) crack growth rate behavior of Ti-24Al-11Nb are presented and compared with results from previous studies on titanium and nickel-base superalloys. Elevated-temperature crack growth mechanisms in this alloy, which involve fatigue, oxidation and creep, and the influence of frequency, temperature, and hold-time are discussed. These mechanisms are used to interpret the observations of TMF crack growth. The limitations of current crack growth rate models based on the linear-elastic fracture mechanics parameter, K, are addressed.

1.
Balsone, S. J., Khobaib, M., Maxwell, D. C., and Nicholas, T., “Environment and Frequency Effects on Crack Growth in a Titanium Aluminide Alloy,” Elevated Temperature Crack Growth, MD-Vol. 18, S. Mall and T. Nicholas, eds., American Society of Mechanical Engineers, New York, 1990, pp. 87–91.
2.
Mall
 
S.
,
Nicholas
 
T.
,
Pernot
 
J. J.
, and
Burgess
 
D. G.
, “
Crack Growth in a Titanium Aluminide Alloy under Thermal Mechanical Cycling
,”
Fatigue Fract. Engng. Mater. Struct.
, Vol.
14
,
1991
, pp.
79
87
.
3.
Larsen, J. M., Williams, K. A., Balsone, S. J., and Stucke, M. A., “Titanium Aluminides for Aerospace Applications,” Proceedings from the 1989 Symposium on High Temperature Aluminides and Intermetallics, 1989.
4.
Nicholas
 
T.
,
Heil
 
M. L.
, and
Haritos
 
G. K.
, “
Predicting Crack Growth under Thermo-Mechanical Cycling
,”
Int. Journal Fracture
, Vol.
41
,
1989
, pp.
157
176
.
5.
Mall
 
S.
,
Staubs
 
E. A.
, and
Nicholas
 
T.
, “
Investigation of Creep/Fatigue Interaction on Crack Growth in a Titanium Aluminide Alloy
,”
ASME JOURNAL OF ENGINEERING MATERIALS AND TECHNOLOGY
, Vol.
112
,
1990
, pp.
435
441
.
6.
Nicholas, T., and Mall, S., “Elevated Temperature Crack Growth in Aircraft Engine Materials,” Advances in Fatigue Lifetime Predictive Techniques, ASTM STP 1122, M. R. Mitchell and R. W. Landgraf, eds., American Society for Testing and Materials, Philadelphia, 1991, pp. 143–157.
7.
Nicholas, T., “Fatigue Crack Growth Modeling at Elevated Temperatures Using Fracture Mechanics,” Elevated Temperature Crack Growth, MD-Vol. 18, S. Mall and T. Nicholas, eds., American Society of Mechanical Engineers, New York, 1990, pp. 107–112.
8.
Parida
 
B. K.
, and
Nicholas
 
T.
, “
Frequency and Hold-Time Effects on Crack Growth of Ti-24Al-11Nb at High Temperature
,”
Mat. Sci. Eng.
, Vol.
A153
,
1992
, pp.
493
498
.
9.
Pernot, J. J., “Crack Growth Rate Modeling of a Titanium-Aluminide Alloy under Thermal-Mechanical Cycling,” Ph.D. dissertation, AFIT, Wright-Patterson AFB OH, 1991.
10.
Pernot, J. J., Nicholas, T., and Mall, S., “Modeling Thermomechanical Fatigue Crack Growth Rates in Ti-24Al-11Nb,” Int. Journal Fatigue, 1994 (in press).
11.
Floreen
 
S.
, and
Kane
 
R. H.
,
Fatigue of Engng. Mater, and Struct.
, Vol.
2
,
1980
, pp.
401
412
.
12.
Weerasooriya, T., “Effect of Frequency on Fatigue Crack Growth Rate of Inconel 718 at High Temperature,” Fracture Mechanics: Nineteenth Symposium, ASTM STP 969, 1988, pp. 907–923.
13.
James, L. A., “Stress Analysis and Growth of Cracks,” Stress Analysis and Growth of Cracks, Proceedings of the 1971 National Symposium on Fracture Mechanics, Part I, ASTM STP 513, 1971, pp. 218–229.
14.
Saxena, A., and Bassani, J. L., “Time-Dependent Fatigue Crack Growth Behavior at Elevated Temperatures,” Fatigue: Interactions of Microstructure, Mechanisms and Mechanics, Proceedings of the Symposium Sponsored by the Mechanical Metallurgical and Structural Materials Committees of the Metallurgical Society of AIME and the Flow and Fracture Committee of the American Society for Metals, Feb. 27–29, 1984, Wells, J. M., and Landes, J. D., eds., 1984, pp. 357–383.
15.
James
 
L. A.
, “
The Effect of Grain Size Upon the Fatigue-Crack Propagation Behavior of Alloy 718 Under Hold-Time Cycling at Elevated Temperatures
,”
Engng. Fract. Mech.
, Vol.
25
,
1986
, pp.
305
314
.
16.
Smith
 
H. H.
,
Kullen
 
P. S.
, and
Michel
 
D. J.
, “
Fatigue Crack Propagation Behavior of Titanium Alloys 6242 S and 5621 S at Elevated Temperature
,”
Metallurgical Transactions A
, Vol.
19A
,
1988
, pp.
881
885
.
17.
Eylon
 
D.
, and
Hall
 
J. A.
, “
Fatigue Behavior of Beta Processed Titanium Alloy IMI 685
,”
Metallurgical Transactions A
, Vol.
8A
,
1977
, pp.
981
990
.
18.
Evans
 
W. J.
, and
Gastelow
 
C. R.
, “
The Effect of Hold Time on the Fatigue Properties of a β-Processed Titanium Alloy
,”
Metallurgical Transactions A
, Vol.
10A
,
1979
, pp.
1837
1846
.
19.
Balsone
 
S. J.
,
Maxwell
 
D. C.
,
Khobaib
 
M.
, and
Nicholas
 
T.
, “
Frequency Temperature, and Environmental Effects on Fatigue Crack Growth in Ti3Al
,”
Fatigue 90
, Vol.
II
,
1990
, pp.
1173
1178
.
20.
Ghonem
 
H.
,
Nicholas
 
T.
, and
Pineau
 
A.
, “
Elevated Temperature Fatigue Crack Growth in Alloy 718—Part I: Effects of Mechanical Variables, — Part II: Effects of Environmental and Material Variables
,”
Fat. Fract. Engng. Mat. Sir.
, Vol.
16
,
1993
, pp.
565
590
.
21.
Nicholas, T., and Weerasooriya, T., “Hold-Time Effects in Elevated Temperature Fatigue Crack Propagation,” ASTM STP 905, 1986, pp. 155–168.
22.
Larsen
 
J. M.
, and
Nicholas
 
T.
, “
Cumulative Damage Modeling of Fatigue Crack Growth in Turbine Engine Materials
,”
Engng. Fracture Mech.
, Vol.
22
,
1985
, pp.
713
730
.
23.
Heil
 
M. L.
,
Nicholas
 
T.
, and
Haritos
 
G. K.
, “
Crack Growth in Alloy 718 under Thermal-Mechanical Cycling
,”
PVP
Vol.
123
,
1987
, pp.
23
29
.
24.
Balsone, S. J., “The Effect of Elevated Temperature Exposure on the Tensile and Creep Properties of Ti-24Al-11Nb,” Proceedings of the Workshop on the Oxidation of High-Temperature Intermetallics, Cleveland, OH, Sept., 1988, pp. 22–23.
25.
Ruppen
 
J. A.
, and
McEvily
 
A. J.
, “
The Effect of Elevated Temperature and Environment on the Fatigue Crack Growth Characteristics of Ti-6Al-2Sn-4Zr-2Mo-0.1Si
,”
Fatigue of Engng. Mater. Struct.
, Vol.
2
,
1979
, pp.
63
72
.
26.
Heil, M. L., “Crack Growth in Alloy 718 under Thermal-Mechanical Cycling,” Ph.D. dissertation, AFIT, Wright-Patterson AFB OH, 1986.
27.
Jordan
 
E. H.
, and
Meyers
 
G. J.
, “
Fracture Mechanics Applied to Nonisothermal Fatigue Crack Growth
,”
Engng. Fract. Mech.
, Vol.
23
, No.
2
,
1986
, pp.
345
358
.
28.
Rogers, P. T., and Nicholas, T., “Micro-Mechanics of Crack Growth in Inconel 718 under Thermo-Mechanical Fatigue,” presented at the TMS/AIME Annual Meeting, Phoenix, AZ, Jan. 1988.
29.
Wheeler, O. E., “Spectrum Loading and Crack Growth,” ASME Journal of Basic Engineering, Mar. 1972, pp. 181–186.
30.
DeLuca, D. P., Cowles, B. A., Haake, F. K., and Holland, K. P., “Fatigue and Fracture of Titanium Aluminides,” WRDC-TR-4136, Wright-Patterson AFB OH, 1990.
31.
Parida, B. K., and Nicholas, T., “Growth of Fatigue Cracks Emanating from Notches in Titanium Aluminide,” Proceedings from Joint FEFG/ICF International Conference on Fracture of Engineering Materials and Structures, Singapore, Aug. 6–8, 1991, pp. 685–690.
This content is only available via PDF.
You do not currently have access to this content.