Instead of the conventional theory of the mechanics of metal cutting based on a process of shear confined to a single shear plane, the concept of flow region, a fairly large transitional deformation zone which exists between the rigid region of work and the plastic region of steady chip, was developed. The mechanics of orthogonal cutting was analyzed, theoretical equations for angles of boundary lines of the flow region and for strain in chip were deduced in the case of simple continuous chip formation and confirmed in cutting tests on lead. The concept of flow region was also applied to discontinuous chip formation, and theoretical expressions for angles of boundary lines of the flow region were ascertained to be in agreement with the experimental result for carbon steel.

This content is only available via PDF.
You do not currently have access to this content.