Abstract

Tensegrity structures, characterized by axially loaded mechanical structures, offer promising solutions for space engineering due to their lightweight and resilient nature. This article explores the groundbreaking frontier of the autonomous assembly of tensegrity plates in space using robotic platforms, presenting a detailed emulation of the capture and assembly process of two large tensegrity cubic plates into a single, larger rectangular plate. The study employed two robotic platforms: the Holonomic Omnidirectional Motion Emulation Robot (HOMER), emulating the assembly robot, and the Space Motion and Operation Dynamic Emulator (SMODE), replicating the dynamics of a runaway tensegrity plate. The assembly robot utilized a monocular camera and vision algorithms to obtain relative pose measurements of the drifting plate, updating its position through a Kalman filter relative navigation algorithm. The assembly process was structured into distinct phases, including search, approach, alignment, capture, and return, all executed successfully within a simulated ground environment mimicking space dynamics. This research demonstrates the feasibility and efficacy of robotic platforms for on-orbit assembly of tensegrity structures, paving the way for innovative space infrastructure development and enhanced mission efficiency.

References

1.
Buckminster
,
F. R.
,
1962
, “
Tensile-Integrity Structures
,” Nov. 13. US Patent 3,063,521.
2.
Furuya
,
H.
,
1992
, “
Concept of Deployable Tensegrity Structures in Space Application
,”
Int. J. Space Struct.
,
7
(
2
), pp.
143
151
.
3.
Tibert
,
G.
,
2002
, “
Deployable Tensegrity Structures for Space Applications
,”
Ph.D. thesis
.
Kungl Tekniska Hogskolan, Stockholm
.
4.
Chen
,
M.
,
Goyal
,
R.
,
Majji
,
M.
, and
Skelton
,
R. E.
,
2021
, “
Deployable Tensegrity Lunar Tower
,”
Earth and Space 2021
,
Virtual Online
,
Apr. 19–23
, pp.
1079
1092
.
5.
Sultan
,
C.
,
Corless
,
M.
, and
Skelton
,
R. T.
,
1999
, “
Peak-to-Peak Control of an Adaptive Tensegrity Space Telescope
,”
Smart Structures and Materials 1999: Mathematics and Control in Smart Structures, Vol. 3667
,
Newport Beach, CA
,
June 4
, SPIE, pp.
190
201
.
6.
Skelton
,
R. E.
, and
De Oliveira
,
M. C.
,
2009
,
Tensegrity Systems
,
Vol. 1
,
Springer
,
New York
.
7.
Obara
,
P.
, and
Tomasik
,
J.
,
2020
, “
Parametric Analysis of Tensegrity Plate-Like Structures: Part 1—Qualitative Analysis
,”
Appl. Sci.
,
10
(
20
), p.
7042
.
8.
Masic
,
M.
,
Skelton
,
R. E.
, and
Gill
,
P. E.
,
2005
, “
Algebraic Tensegrity Form-Finding
,”
Int. J. Solids Struct.
,
42
(
16–17
), pp.
4833
4858
.
9.
Patane
,
S. C.
,
Joyce
,
E. R.
,
Snyder
,
M. P.
, and
Shestople
,
P.
,
2017
, “
Archinaut: In-Space Manufacturing and Assembly for Next-Generation Space Habitats
,”
AIAA SPACE and Astronautics Forum and Exposition
,
Orlando, FL
,
Sept. 12–14
,
p. 5227
.
10.
Belvin
,
W. K.
,
Doggett
,
W. R.
,
Watson
,
J. J.
, et al
,
2016
, “
In-Space Structural Assembly: Applications and Technology
,”
Third AIAA Spacecraft Structures Conference
,
San Diego, CA
,
Jan. 4–8
,
p. 2163
.
11.
Davis
,
M.
,
Mayberry
,
J.
, and
Penn
,
J.
,
2019
, “
On-Orbit Servicing: Inspection Repair Refuel Upgrade and Assembly of Satellites in Space
,” The Aerospace Corporation, Report 25.
12.
Owens
,
A. C.
, and
de Weck
,
O. L.
,
2016
, “
Systems Analysis of in-Space Manufacturing Applications for the International Space Station and the Evolvable Mars Campaign
,”
2016 IEEE Aerospace Conference
,
Long Beach, CA
,
Sept. 13–16
, IEEE, pp.
1
18
.
13.
Dorsey
,
J. T.
,
Watson
,
J. J.
,
Doggett
,
W. R.
, et al
,
2012
, “
An Efficient and Versatile Means for Assembling and Manufacturing Systems in Space
,”
AIAA SPACE 2012 Conference & Exposition
,
Pasadena, CA
,
Sept. 11–13
, p. 5115.
14.
Everist
,
J.
,
Mogharei
,
K.
,
Sun
,
H.
,
Ranasinghe
,
N.
,
Khoshnevis
,
B.
,
Will
,
P.
, and
Shen
,
W.-M.
,
2004
, “
A System for In-Space Assembly
,”
2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vol. 3
,
IEEE
, pp.
2356
2361
.
15.
Goyal
,
R.
,
Bryant
,
T.
,
Majji
,
M.
,
Skelton
,
R. E.
, and
Longman
,
A.
,
2017
, “
Design and Control of Growth Adaptable Artificial Gravity Space Habitat
,”
AIAA SPACE and Astronautics Forum and Exposition
, p.
5141
.
16.
Skelton
,
R.
, and
Longman
,
A.
,
2014
, “
Growth Capable Tensegrity Structures as an Enabler of Space Colonization
,”
AIAA Space 2014 Conference and Exposition
, p.
4370
.
17.
Arefeen
,
S.
, and
Dallas
,
T.
,
2021
, “
Low-Cost Racking for Solar Photovoltaic Systems With Renewable Tensegrity Structures
,”
Sol. Energy
,
224
, pp.
798
807
.
18.
Goyal
,
R.
,
2020
, “
Integrating Structure and Control Design Using Tensegrity Paradigm
,” Ph.D. thesis, Texas A&M University, College Station, TX.
19.
Goyal
,
R.
,
Majji
,
M.
, and
Skelton
,
R. E.
,
2021
, “
Integrating Structure, Information Architecture and Control Design: Application to Tensegrity Systems
,”
Mech. Syst. Signal Process.
,
161
, p.
107913
.
20.
Chen
,
M.
,
2021
, “
Soft Robotics by Integrating Structure, Materials, Fluids, Control Design, and Signal Processing Using the Tensegrity Paradigm
,”
Ph.D. thesis.
Texas A&M University, College Station Texas
.
21.
Sung
,
K.
,
Peck
,
C.
,
Majji
,
M.
, and
Junkins
,
J. L.
,
2022
, “
An Optical Navigation System for Autonomous Aerospace Systems
,”
IEEE Sens. J.
,
22
(
17
), pp.
16862
16873
.
22.
Adams
,
D. W.
,
Peck
,
C.
, and
Majji
,
M.
,
2023
, “
Velocimeter Lidar-Informed Terrain Relative Navigation
,”
J. Guid. Contr. Dyn.
, pp.
1
16
.
23.
Adams
,
D.
, and
Majji
,
M.
,
2022
, “
Velocimeter Lidar-Based Relative Rate Estimation for Autonomous Rendezvous, Proximity Operations, and Docking Applications
,”
Proceedings of the 44th Annual American Astronautical Society Guidance, Navigation, and Control Conference
,
Breckenridge, CO
,
Feb. 2022
, Springer, pp.
1661
1675
.
24.
Peck
,
C.
, and
Majji
,
M.
,
2023
, “
A Mass-Optimal Spatial Tensegrity Structure to Support a Cantilever Load
,”
J. Aerosp. Eng.
,
36
(
4
), p.
04023019
.
25.
Goyal
,
R.
,
Chen
,
M.
,
Majji
,
M.
, and
Skelton
,
R. E.
,
2020
, “
Gyroscopic Tensegrity Robots
,”
IEEE Rob. Autom. Lett.
,
5
(
2
), pp.
1239
1246
.
26.
Arya
,
V.
,
Goyal
,
R.
,
Majji
,
M.
, and
Junkins
,
J. L.
,
2021
, “
Design of lqr Weighting Matrices for Time Varying Output Covariance Assignment
,”
AAS Astrodynamics Specialist Conference, AAS Paper
,
Big Sky, Virtual
,
August 2021
.
27.
Schaub
,
H.
,
Akella
,
M. R.
, and
Junkins
,
J. L.
,
2000
, “
Adaptive Realization of Linear Closed-Loop Tracking Dynamics in the Presence of Large System Model Errors
,”
J. Astronaut. Sci.
,
48
(
4
), pp.
537
551
.
28.
Schaub
,
H.
,
Akella
,
M. R.
, and
Junkins
,
J. L.
,
2001
, “
Adaptive Control of Nonlinear Attitude Motions Realizing Linear Closed Loop Dynamics
,”
J. Guidance, Control, Dyn.
,
24
(
1
), pp.
95
100
.
29.
Davis
,
J.
,
Doebbler
,
J.
,
Daugherty
,
K.
,
Junkins
,
J.
, and
Valasek
,
J.
,
2007
, “
Aerospace Vehicle Motion Emulation Using Omni-Directional Mobile Platform
,”
AIAA Guidance, Navigation and Control Conference and Exhibit
, p.
6325
.
30.
Kalman
,
R. E.
,
1960
, “
A New Approach to Linear Filtering and Prediction Problems
,”
J. Basic Eng.
,
82
(
1
), pp.
35
45
.
31.
Bai
,
X.
,
Davis
,
J.
,
Doebbler
,
J.
,
Turner
,
J. D.
, and
Junkins
,
J. L.
,
2009
, “
Modeling, Control and Simulation of a Novel Mobile Robotic System
,”
Adv. Comput. Algorithms Data Anal.
,
14
, pp.
451
464
.
You do not currently have access to this content.