Abstract

Powder-based solvent-free manufacturing of electrodes for Li-ion batteries represents an emerging and promising technology in electrode fabrication. This method involves a two-roll powder calendering process, where electrode powder materials are compressed onto a current collector to form electrodes with desired properties. The calendering or compaction of dry powders onto a current collector is a crucial step in solvent-free electrode manufacturing, significantly impacting the microstructures, mechanical properties, and electrochemical performance of the produced electrodes. In this article, we investigate the compaction characteristics of electrode powders to gain insights into their behavior. A powder-on-current collector calendering model is developed based on Johanson's rolling theory of granular solids. This model enables us to infer the underlying calendering parameters essential for the solvent-free manufacturing of Li-ion batteries. To validate the model, we compare it with experimental calendering results, utilizing measured powder properties and roll design parameters as inputs. This approach offers a comprehensive understanding of the effects of roll geometries, particularly roll diameter, and various equipment design parameters on final electrode properties. Such insights have not been thoroughly explored in the emerging field of solvent-free battery electrode manufacturing, thereby contributing to advancements in this area.

References

1.
Ludwig
,
B.
,
Zheng
,
Z. F.
,
Shou
,
W.
,
Wang
,
Y.
, and
Pan
,
H.
,
2016
, “
Solvent-Free Manufacturing of Electrodes for Lithium-Ion Batteries
,”
Sci. Rep.
,
6
(
1
), p.
23150
.
2.
Liu
,
J.
,
Ludwig
,
B.
,
Liu
,
Y. T.
,
Pan
,
H.
, and
Wang
,
Y.
,
2019
, “
Strengthening the Electrodes for Li-Ion Batteries With a Porous Adhesive Interlayer Through Dry-Spraying Manufacturing
,”
ACS Appl. Mater. Interfaces
,
11
(
28
), pp.
25081
25089
.
3.
Gao
,
Z. J.
,
Fu
,
J. Z.
,
Podder
,
C.
,
Gong
,
X. T.
,
Wang
,
Y.
, and
Pan
,
H.
,
2024
, “
Particle Interactions During Dry Powder Mixing and Their Effect on Solvent-Free Manufactured Electrode Properties
,”
J. Energy Storage
,
83
, p.
110605
.
4.
Liu
,
Y. T.
,
Gong
,
X. T.
,
Podder
,
C.
,
Wang
,
F.
,
Li
,
Z. Y.
,
Liu
,
J. Z.
,
Fu
,
J. Z.
, et al
,
2023
, “
Roll-to-Roll Solvent-Free Manufactured Electrodes for Fast-Charging Batteries
,”
Joule
,
7
(
5
), pp.
952
970
.
5.
Abdollahifar
,
M.
,
Cavers
,
H.
,
Scheffler
,
S.
,
Diener
,
A.
,
Lippke
,
M.
, and
Kwade
,
A.
,
2023
, “
Insights Into Influencing Electrode Calendering on the Battery Performance
,”
Adv. Energy Mater.
,
13
(
40
), p.
2300973
.
6.
Haselrieder
,
W.
,
Ivanov
,
S.
,
Christen
,
D. K.
,
Bockholt
,
H.
, and
Kwade
,
A.
,
2013
, “
Impact of the Calendering Process on the Interfacial Structure and the Related Electrochemical Performance of Secondary Lithium-Ion Batteries
,”
ECS Trans.
,
50
(
26
), pp.
59
70
.
7.
Shim
,
J.
, and
Striebel
,
K. A.
,
2003
, “
Effect of Electrode Density on Cycle Performance and Irreversible Capacity Loss for Natural Graphite Anode in Lithium-Ion Batteries
,”
J. Power Sources
,
119–121
, pp.
934
937
.
8.
Schilcher
,
C.
,
Meyer
,
C.
, and
Kwade
,
A.
,
2016
, “
Structural and Electrochemical Properties of Calendered Lithium Manganese Oxide Cathodes
,”
Energy Technol.
,
4
(
12
), pp.
1604
1610
.
9.
Meyer
,
C.
,
Bockholt
,
H.
,
Haselrieder
,
W.
, and
Kwade
,
A.
,
2017
, “
Characterization of the Calendering Process for Compaction of Electrodes for Lithium-ion Batteries
,”
J. Mater. Process. Technol.
,
249
, pp.
172
178
.
10.
Heckel
,
R. W.
,
1961
, “
Density-Pressure Relationships in Powder Compaction
,”
Trans. Metall. Soc. AIME Aime
,
221
, pp.
671
675
.
11.
Meyer
,
C.
,
Kosfeld
,
M.
,
Haselrieder
,
W.
, and
Kwade
,
A.
,
2018
, “
Process Modeling of the Electrode Calendering of Lithium-Ion Batteries Regarding Variation of Cathode Active Materials and Mass Loadings
,”
J. Energy Storage
,
18
, pp.
371
379
.
12.
Schreiner
,
D.
,
Oguntke
,
M.
,
Guenther
,
T.
, and
Reinhart
,
G.
,
2019
, “
Modelling of the Calendering Process of NMC-622 Cathodes in Battery Production Analyzing Machine/Material-Process-Structure Correlations
,”
Energy Technol.
,
7
(
11
), p.
1900840
.
13.
Diener
,
A.
,
Ivanov
,
S.
,
Haselrieder
,
W.
, and
Kwade
,
A.
,
2022
, “
Evaluation of Deformation Behavior and Fast Elastic Recovery of Lithium-Ion Battery Cathodes via Direct Roll-Gap Detection During Calendering
,”
Energy Technol.
,
10
(
4
), p.
2101033
.
14.
Ngandjong
,
A. C.
,
Lombardo
,
T.
,
Primo
,
E. N.
,
Chouchane
,
M.
,
Shodiev
,
A.
,
Arcelus
,
O.
, and
Franco
,
A. A.
,
2021
, “
Investigating Electrode Calendering and its Impact on Electrochemical Performance by Means of a New Discrete Element Method Model: Towards a Digital Twin of Li-Ion Battery Manufacturing
,”
J. Power Sources
,
485
, p.
229320
.
15.
Giménez
,
C. S. A.
,
Finke
,
B.
,
Nowak
,
C.
,
Schilde
,
C.
, and
Kwade
,
A.
,
2018
, “
Structural and Mechanical Characterization of Lithium-ion Battery Electrodes via DEM Simulations
,”
Adv. Powder Technol.
,
29
(
10
), pp.
2312
2321
.
16.
Lundkvist
,
A.
,
Larsson
,
P. L.
, and
Olsson
,
E.
,
2023
, “
A Discrete Element Analysis of the Mechanical Behaviour of a Lithium-Ion Battery Electrode Active Layer
,”
Powder Technol.
,
425
, p.
118574
.
17.
Schreiner
,
D.
,
Lindenblatt
,
J.
,
Daub
,
R.
, and
Reinhart
,
G.
,
2023
, “
Simulation of the Calendering Process of NMC-622 Cathodes for Lithium-Ion Batteries
,”
Energy Technol.
,
11
(
5
), p.
2200442
.
18.
Johanson
,
J. R.
,
1965
, “
A Rolling Theory for Granular Solids
,”
ASME J. Appl. Mech.
,
32
(
4
), pp.
842
848
.
19.
Bindhumadhavan
,
G.
,
Seville
,
J. P. K.
,
Adams
,
N.
,
Greenwood
,
R. W.
, and
Fitzpatrick
,
S.
,
2005
, “
Roll Compaction of a Pharmaceutical Excipient: Experimental Validation of Rolling Theory for Granular Solids
,”
Chem. Eng. Sci.
,
60
(
14
), pp.
3891
3897
.
20.
Dec
,
R. T.
,
Zavaliangos
,
A.
, and
Cunningham
,
J. C.
,
2003
, “
Comparison of Various Modeling Methods for Analysis of Powder Compaction in Roller Press
,”
Powder Technol.
,
130
(
1–3
), pp.
265
271
.
21.
Muliadi
,
A. R.
,
Litster
,
J. D.
, and
Wassgren
,
C. R.
,
2012
, “
Modeling the Powder Roll Compaction Process: Comparison of 2-D Finite Element Method and the Rolling Theory for Granular Solids (Johanson's Model)
,”
Powder Technol.
,
221
, pp.
90
100
.
22.
Reynolds
,
G.
,
Ingale
,
R.
,
Roberts
,
R.
,
Kothari
,
S.
, and
Gururajan
,
B.
,
2010
, “
Practical Application of Roller Compaction Process Modeling
,”
Comput. Chem. Eng.
,
34
(
7
), pp.
1049
1057
.
23.
Patel
,
D.
,
Patel
,
V. D.
,
Sedlock
,
R.
, and
Haware
,
R. V.
,
2022
, “
Negative Porosity Issue in the Heckel Analysis: A Possible Solution
,”
Int. J. Pharm.
,
627
, p.
122205
.
24.
Kawakita
,
K.
, and
Tsutsumi
,
Y.
,
1965
, “
An Empirical Equation of State for Powder Compression
,”
Jpn J. Appl. Phys.
,
4
(
1
), p.
56
.
25.
Nordström
,
J.
,
Klevan
,
I.
, and
Alderborn
,
G.
,
2009
, “
A Particle Rearrangement Index Based on the Kawakita Powder Compression Equation
,”
J. Pharm. Sci.
,
98
(
3
), pp.
1053
1063
.
26.
Adams
,
M. J.
, and
McKeown
,
R.
,
1996
, “
Micromechanical Analyses of the Pressure-Volume Relationships for Powders Under Confined Uniaxial Compression
,”
Powder Technol.
,
88
(
2
), pp.
155
163
.
27.
Adams
,
M. J.
,
Mullier
,
M. A.
, and
Seville
,
J. P. K.
,
1994
, “
Agglomerate Strength Measurement Using a Uniaxial Confined Compression Test
,”
Powder Technol.
,
78
(
1
), pp.
5
13
.
28.
Kuentz
,
M.
, and
Leuenberger
,
H.
,
1999
, “
Pressure Susceptibility of Polymer Tablets as a Critical Property: A Modified Heckel Equation
,”
J. Pharm. Sci.
,
88
(
2
), pp.
174
179
.
29.
Sun
,
C. Q.
,
2004
, “
A Novel Method for Deriving True Density of Pharmaceutical Solids Including Hydrates and Water-Containing Powders
,”
J. Pharm. Sci.
,
93
(
3
), pp.
646
653
.
30.
Cooper
,
A. R.
, and
Eaton
,
L. E.
,
1962
, “
Compaction Behavior of Several Ceramic Powders
,”
J. Am. Ceram. Soc.
,
45
(
3
), pp.
97
101
.
31.
Ilkka
,
J.
, and
Paronen
,
P.
,
1993
, “
Prediction of the Compression Behavior of Powder Mixtures by the Heckel Equation
,”
Int. J. Pharm.
,
94
(
1–3
), pp.
181
187
.
You do not currently have access to this content.