Abstract

The disassembly line balancing problem (DLBP) is of significant importance in the product recycling process. However, existing DLBP research has primarily proposed improved optimization algorithms for single-solution space. To provide decision makers with more efficient disassembly solutions, this article chooses three classical layouts (straight, U-shaped, and parallel) to broaden the solution space and expands an incomplete DLBP with multisolution spaces (DLBP-MS). By employing the strategy of incomplete disassembly, only the essential components are retained. In DLBP-MS, the disassembly information from used products is processed and imported into the three types of disassembly spaces to be solved and compared to find suitable disassembly solutions. And a multiobjective mathematical model is developed, and this includes factors such as workstation count, free time, disassembly smoothness index, carbon emission, and disassembly revenue. The part constraints are established based on directed graphs, and the encoding and decoding methods for multisolution spaces disassembly sequences in the random incomplete case are designed, respectively. A ring topology-based flower pollination algorithm (RTFPA) is introduced to effectively address the DLBP-MS. The solution set obtained during the iterative process is divided into subsets based on the congestion level and the overall diversity is preserved by internal optimization of these subsets. After that, the RTFPA is applied to the DLBP-MS of waste cell phones and computers. The improvement of the algorithm's optimization ability under different solution spaces is verified by comparing the results with those obtained from four other algorithms.

References

1.
Guo
,
X.
,
Zhou
,
M.
,
Abusorrah
,
A.
,
Alsokhiry
,
F.
, and
Sedraoui
,
K.
,
2021
, “
Disassembly Sequence Planning: A Survey
,”
IEEE/CAA J. Automatica Sin.
,
8
(
7
), pp.
1308
1324
.
2.
Yin
,
T.
,
Zhang
,
Z.
, and
Jiang
,
J.
,
2021
, “
A Pareto-Discrete Hummingbird Algorithm for Partial Sequence-Dependent Disassembly Line Balancing Problem Considering Tool Requirements
,”
J. Manuf. Syst.
,
60
, pp.
406
428
.
3.
Kucukkoc
,
I.
,
Li
,
Z.
, and
Li
,
Y.
,
2020
, “
Type-E Disassembly Line Balancing Problem With Multi-Manned Workstations
,”
Optim. Eng.
,
21
(
2
), pp.
611
630
.
4.
Li
,
Z. X.
, and
Janardhanan
,
M. N.
,
2021
, “
Modelling and Solving Profit-Oriented U-Shaped Partial Disassembly Line Balancing Problem
,”
Expert Syst. Appl.
,
183
, p.
13
.
5.
Li
,
Z. X.
,
Kucukkoc
,
I.
,
Tang
,
Q. H.
, and
Zhang
,
Z. K.
,
2023
, “
Models and Two-Phase Bee Algorithms for Multi-Objective U-Shaped Disassembly Line Balancing Problem
,”
Optim. Eng.
,
24
(
1
), pp.
591
622
.
6.
Zhang
,
L.
,
Wu
,
Y.
,
Zhao
,
X.
,
Pan
,
S.
,
Li
,
Z.
,
Bao
,
H.
, and
Tian
,
Y.
,
2022
, “
A Multi-Objective Two-Sided Disassembly Line Balancing Optimization Based on Artificial Bee Colony Algorithm: A Case Study of an Automotive Engine
,”
Int. J. Precis. Eng. Manuf. Green Technol.
,
9
(
5
), pp.
1329
1347
.
7.
Liang
,
J.
,
Guo
,
S.
,
Du
,
B.
,
Liu
,
W.
, and
Zhang
,
Y.
,
2022
, “
Restart Genetic Flatworm Algorithm for Two-Sided Disassembly Line Balancing Problem Considering Negative Impact of Destructive Disassembly
,”
J. Clean Prod.
,
355
, p.
16
.
8.
Hu
,
Y. X.
,
Liu
,
C.
,
Zhang
,
M.
,
Jia
,
Y.
, and
Xu
,
Y. C.
,
2023
, “
A Novel Simulated Annealing-Based Hyper-Heuristic Algorithm for Stochastic Parallel Disassembly Line Balancing in Smart Remanufacturing
,”
Sensors
,
23
(
3
), p.
28
.
9.
Zhu
,
L.
,
Zhang
,
Z.
, and
Guan
,
C.
,
2020
, “
Multi-Objective Partial Parallel Disassembly Line Balancing Problem Using Hybrid Group Neighbourhood Search Algorithm
,”
J. Manuf. Syst.
,
56
, pp.
252
269
.
10.
Guo
,
X.
,
Zhang
,
Z.
,
Qi
,
L.
,
Liu
,
S.
,
Tang
,
Y.
, and
Zhao
,
Z.
,
2022
, “
Stochastic Hybrid Discrete Grey Wolf Optimizer for Multi-Objective Disassembly Sequencing and Line Balancing Planning in Disassembling Multiple Products
,”
IEEE Trans. Autom. Sci. Eng.
,
19
(
3
), pp.
1744
1756
.
11.
Liu
,
J.
, and
Wang
,
S. W.
,
2017
, “
Balancing Disassembly Line in Product Recovery to Promote the Coordinated Development of Economy and Environment
,”
Sustainability
,
9
(
2
), p.
15
.
12.
Li
,
Z. X.
,
Kucukkoc
,
I.
, and
Zhang
,
Z. K.
,
2019
, “
Iterated Local Search Method and Mathematical Model for Sequence-Dependent U-Shaped Disassembly Line Balancing Problem
,”
Comput. Ind. Eng.
,
137
, p.
15
.
13.
Bentaha
,
M. L.
,
Dolgui
,
A.
,
Battaïa
,
O.
,
Riggs
,
R. J.
, and
Hu
,
J.
,
2018
, “
Profit-Oriented Partial Disassembly Line Design: Dealing With Hazardous Parts and Task Processing Times Uncertainty
,”
Int. J. Prod. Res.
,
56
(
24
), pp.
7220
7242
.
14.
Liang
,
P.
,
Fu
,
Y.
,
Gao
,
K.
, and
Sun
,
H.
,
2022
, “
An Enhanced Group Teaching Optimization Algorithm for Multi-Product Disassembly Line Balancing Problems
,”
Complex Intell. Syst.
,
8
(
6
), pp.
4497
4512
.
15.
Hasegawa
,
S.
,
Kinoshita
,
Y.
,
Yamada
,
T.
, and
Bracke
,
S.
,
2019
, “
Life Cycle Option Selection of Disassembly Parts for Material-Based CO2 Saving Rate and Recovery Cost: Analysis of Different Market Value and Labor Cost for Reused Parts in German and Japanese Cases
,”
Int. J. Prod. Econ.
,
213
, pp.
229
242
.
16.
Zhang
,
L.
,
Zhao
,
X.
,
Ke
,
Q.
,
Dong
,
W.
, and
Zhong
,
Y.
,
2021
, “
Disassembly Line Balancing Optimization Method for High Efficiency and Low Carbon Emission
,”
Int. J. Precis. Eng. Manuf. Green Technol.
,
8
(
1
), pp.
233
247
.
17.
Igarashi
,
K.
,
Yamada
,
T.
,
Gupta
,
S. M.
,
Inoue
,
M.
, and
Itsubo
,
N.
,
2016
, “
Disassembly System Modeling and Design With Parts Selection for Cost, Recycling and CO2 Saving Rates Using Multi Criteria Optimization
,”
J. Manuf. Syst.
,
38
, pp.
151
164
.
18.
McGovern
,
S. M.
, and
Gupta
,
S. M.
,
2007
, “
A Balancing Method and Genetic Algorithm for Disassembly Line Balancing
,”
Eur. J. Oper. Res.
,
179
(
3
), pp.
692
708
.
19.
Kalayci
,
C. B.
,
Polat
,
O.
, and
Gupta
,
S. M.
,
2016
, “
A Hybrid Genetic Algorithm for Sequence-Dependent Disassembly Line Balancing Problem
,”
Ann. Oper. Res.
,
242
(
2
), pp.
321
354
.
20.
Wang
,
K.
,
Li
,
X.
,
Gao
,
L.
,
Li
,
P.
, and
Sutherland
,
J. W.
,
2022
, “
A Discrete Artificial Bee Colony Algorithm for Multiobjective Disassembly Line Balancing of End-of-Life Products
,”
IEEE Trans. Cybern.
,
52
(
8
), pp.
7415
7426
.
21.
Yang
,
X.-S.
,
Karamanoglu
,
M.
, and
He
,
X. S.
,
2014
, “
Flower Pollination Algorithm: A Novel Approach for Multiobjective Optimization
,”
Eng. Optim.
,
46
(
9
), pp.
1222
1237
.
22.
Yu
,
D. X.
,
Zhang
,
X. S.
,
Tian
,
G. D.
,
Jiang
,
Z. G.
,
Liu
,
Z. M.
,
Qiang
,
T. G.
, and
Zhan
,
C. S.
,
2022
, “
Disassembly Sequence Planning for Green Remanufacturing Using an Improved Whale Optimisation Algorithm
,”
Processes
,
10
(
10
), p.
15
.
23.
Güngör
,
A.
, and
Gupta
,
S. M.
,
2002
, “
Disassembly Line in Product Recovery
,”
Int. J. Prod. Res.
,
40
(
11
), pp.
2569
2589
.
24.
Hezer
,
S.
, and
Kara
,
Y.
,
2015
, “
A Network-Based Shortest Route Model for Parallel Disassembly Line Balancing Problem
,”
Int. J. Prod. Res.
,
53
(
6
), pp.
1849
1865
.
25.
Agrawal
,
S.
, and
Tiwari
,
M. K.
,
2008
, “
A Collaborative ant Colony Algorithm to Stochastic Mixed-Model U-Shaped Disassembly Line Balancing and Sequencing Problem
,”
Int. J. Prod. Res.
,
46
(
6
), pp.
1405
1429
.
26.
Zhang
,
X. F.
,
Yu
,
G.
,
Hu
,
Z. Y.
,
Pei
,
C. H.
, and
Ma
,
G. Q.
,
2014
, “
Parallel Disassembly Sequence Planning for Complex Products Based on Fuzzy-Rough Sets
,”
Int. J. Adv. Manuf. Technol.
,
72
(
1–4
), pp.
231
239
.
27.
Wang
,
K.
,
Li
,
X.
,
Gao
,
L.
, and
Li
,
P.
,
2021
, “
Modeling and Balancing for Green Disassembly Line Using Associated Parts Precedence Graph and Multi-Objective Genetic Simulated Annealing
,”
Int. J. Precis. Eng. Manuf. Green Technol.
,
8
(
5
), pp.
1597
1613
.
28.
Wang
,
K.
,
Gao
,
L.
, and
Li
,
X.
,
2020
, “
A Multi-Objective Algorithm for U-Shaped Disassembly Line Balancing With Partial Destructive Mode
,”
Neural Comput. Appl.
,
32
(
16
), pp.
12715
12736
.
29.
Wang
,
K.
,
Li
,
X.
, and
Gao
,
L.
,
2019
, “
A Multi-Objective Discrete Flower Pollination Algorithm for Stochastic Two-Sided Partial Disassembly Line Balancing Problem
,”
Comput. Ind. Eng.
,
130
, pp.
634
649
.
30.
Liu
,
H. L.
,
Chen
,
L.
,
Deb
,
K.
, and
Goodman
,
E. D.
,
2017
, “
Investigating the Effect of Imbalance Between Convergence and Diversity in Evolutionary Multiobjective Algorithms
,”
IEEE Trans. Evol. Comput.
,
21
(
3
), pp.
408
425
.
31.
Wang
,
K. P.
,
Zhang
,
Z. Q.
,
Mao
,
L. L.
, and
Li
,
L. K.
,
2017
, “
Pareto Artificial Fish Swarm Algorithm for Multi-Objective Disassembly Line Balancing Problems
,”
Chin. J. Mech. Eng.
,
28
(
2
), pp.
183
190
.
32.
Deb
,
K.
,
Agrawal
,
S.
,
Pratap
,
A.
, and
Meyarivan
,
T.
,
2002
, “
A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II
,”
IEEE Trans. Evol. Comput.
,
6
(
2
), pp.
182
197
.
33.
Zitzler
,
E.
, and
Thiele
,
L.
,
1999
, “
Multiobjective Evolutionary Algorithms: A Comparative Case Study and the Strength Pareto Approach
,”
IEEE Trans. Evol. Comput.
,
3
(
4
), pp.
257
271
.
34.
Zitzler
,
E.
,
Thiele
,
L.
,
Laumanns
,
M.
,
Fonseca
,
C. M.
, and
da Fonseca
,
V. G.
,
2003
, “
Performance Assessment of Multiobjective Optimizers: An Analysis and Review
,”
IEEE Trans. Evol. Comput.
,
7
(
2
), pp.
117
132
.
You do not currently have access to this content.