Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Wire arc directed energy deposition (Wire Arc DED) has become a popular metal additive manufacturing technique for its capability to print large metal parts at a high deposition rate while being economically efficient. However, the Wire Arc DED process exhibits geometric inaccuracies resulting from the variability in the bead geometry and demonstrates heterogeneity in microstructure and mechanical properties. This study investigates the use of tailored periodic machining interventions during the Wire Arc DED process to address these shortcomings. The as-built geometry and surface finish, microstructure, and microhardness of multilayer wall structures produced with and without machining interventions carried out at different temperatures are compared. The machining interventions are found to reduce the uncertainty in bead geometry evolution and significantly improve the surface roughness of the as-built walls, thus reducing the need for further postprocessing of the wall surfaces. Although the microstructure constituents of the as-built wall structures with and without machining interventions are similar, the machining interventions result in finer grains in the interior of the part. Machining interventions are found to yield a statistically significant increase in microhardness, indicating increased strength compared to Wire Arc DED alone. In addition, the spread of the microhardness distribution is reduced in Hybrid Wire Arc DED, indicating improved homogeneity of the grain size distribution compared to Wire Arc DED alone. The study shows that the proposed hybrid manufacturing technique has the potential to control and improve the geometric and mechanical properties of additively manufactured metal components.

References

1.
Williams
,
S. W.
,
Martina
,
F.
,
Addison
,
A. C.
,
Ding
,
J.
,
Pardal
,
G.
, and
Colegrove
,
P.
,
2016
, “
Wire + Arc Additive Manufacturing
,”
Mater. Sci. Technol.
,
32
(
7
), pp.
641
647
.
2.
Ding
,
D.
,
Pan
,
Z.
,
Cuiuri
,
D.
, and
Li
,
H.
,
2015
, “
Wire-Feed Additive Manufacturing of Metal Components: Technologies, Developments and Future Interests
,”
Int. J. Adv. Manuf. Technol.
,
81
(
1–4
), pp.
465
481
.
3.
Wu
,
B.
,
Pan
,
Z.
,
Ding
,
D.
,
Cuiuri
,
D.
,
Li
,
H.
,
Xu
,
J.
, and
Norrish
,
J.
,
2018
, “
A Review of the Wire Arc Additive Manufacturing of Metals: Properties, Defects and Quality Improvement
,”
J. Manuf. Process.
,
35
, pp.
127
139
.
4.
Xia
,
C.
,
Pan
,
Z.
,
Polden
,
J.
,
Li
,
H.
,
Xu
,
Y.
,
Chen
,
S.
, and
Zhang
,
Y.
,
2020
, “
A Review on Wire Arc Additive Manufacturing: Monitoring, Control and a Framework of Automated System
,”
J. Manuf. Syst.
,
57
, pp.
31
45
.
5.
Pan
,
Z.
,
Feng
,
Y.
, and
Liang
,
S. Y.
,
2017
, “
Material Microstructure Affected Machining: A Review
,”
Manuf. Rev.
,
4
, p.
5
.
6.
Thiele
,
J. D.
, and
Melkote
,
S. N.
,
2000
, “
Effect of Tool Edge Geometry on Workpiece Subsurface Deformation and Through-Thickness Residual Stresses for Hard Turning of AISI 52100 Steel
,”
J. Manuf. Process.
,
2
(
4
), pp.
270
276
.
7.
Jeelani
,
S.
, and
Ramakrishnan
,
K.
,
1983
, “
Subsurface Plastic Deformation in Machining 6Al-2Sn-4Zr-2Mo Titanium Alloy
,”
Wear
,
85
(
1
), pp.
121
130
.
8.
Liao
,
Z.
,
Polyakov
,
M.
,
Diaz
,
O. G.
,
Axinte
,
D.
,
Mohanty
,
G.
,
Maeder
,
X.
,
Michler
,
J.
, and
Hardy
,
M.
,
2019
, “
Grain Refinement Mechanism of Nickel-Based Superalloy by Severe Plastic Deformation—Mechanical Machining Case
,”
Acta Mater.
,
180
, pp.
2
14
.
9.
Shankar
,
M. R.
,
Rao
,
B. C.
,
Lee
,
S.
,
Chandrasekar
,
S.
,
King
,
A. H.
, and
Compton
,
W. D.
,
2006
, “
Severe Plastic Deformation (SPD) of Titanium at Near-Ambient Temperature
,”
Acta Mater.
,
54
(
14
), pp.
3691
3700
.
10.
Guo
,
Y.
,
Saldana
,
C.
,
Dale Compton
,
W.
, and
Chandrasekar
,
S.
,
2011
, “
Controlling Deformation and Microstructure on Machined Surfaces
,”
Acta Mater.
,
59
(
11
), pp.
4538
4547
.
11.
Guddat
,
J.
,
M’Saoubi
,
R.
,
Alm
,
P.
, and
Meyer
,
D.
,
2011
, “
Hard Turning of AISI 52100 Using PCBN Wiper Geometry Inserts and the Resulting Surface Integrity
,”
Proc. Eng., 1st CIRP Conf. Surf. Integr. (CSI)
,
19
, pp.
118
124
.
12.
Klocke
,
F.
, and
Kratz
,
H.
,
2005
, “
Advanced Tool Edge Geometry for High Precision Hard Turning
,”
CIRP Ann.
,
54
(
1
), pp.
47
50
.
13.
Hedberg
,
G. K.
, and
Shin
,
Y. C.
,
2015
, “
Laser Assisted Milling of Ti-6Al-4 V ELI With the Analysis of Surface Integrity and Its Economics
,”
Lasers Manuf. Mater. Process.
,
2
(
3
), pp.
164
185
.
14.
Lajis
,
M. A.
,
Amin
,
A. K. M. N.
, and
Karim
,
A. N. M.
,
2012
, “
Surface Integrity in Hot Machining of AISI D2 Hardened Steel
,”
Adv. Mater. Res.
,
500
, pp.
44
50
. www.scientific.net/AMR.500.44
15.
Hönnige
,
J.
,
Seow
,
C. E.
,
Ganguly
,
S.
,
Xu
,
X.
,
Cabeza
,
S.
,
Coules
,
H.
, and
Williams
,
S.
,
2021
, “
Study of Residual Stress and Microstructural Evolution in As-Deposited and Inter-Pass Rolled Wire Plus arc Additively Manufactured Inconel 718 Alloy After Ageing Treatment
,”
Mater. Sci. Eng.: A
,
801
, p.
140368
.
16.
Zhang
,
T.
,
Li
,
H.
,
Gong
,
H.
,
Ding
,
J.
,
Wu
,
Y.
,
Diao
,
C.
,
Zhang
,
X.
, and
Williams
,
S.
,
2022
, “
Hybrid Wire—Arc Additive Manufacture and Effect of Rolling Process on Microstructure and Tensile Properties of Inconel 718
,”
J. Mater. Process. Technol.
,
299
, p.
117361
.
17.
Colegrove
,
P. A.
,
Coules
,
H. E.
,
Fairman
,
J.
,
Martina
,
F.
,
Kashoob
,
T.
,
Mamash
,
H.
, and
Cozzolino
,
L. D.
,
2013
, “
Microstructure and Residual Stress Improvement in Wire and Arc Additively Manufactured Parts Through High-Pressure Rolling
,”
J. Mater. Process. Technol.
,
213
(
10
), pp.
1782
1791
.
18.
Chen
,
C.
,
Feng
,
T.
,
Sun
,
G.
, and
Zhang
,
H.
,
2022
, “
Microstructure and Mechanical Characteristics of 307Si Stainless Steel Thin-Wall Parts in Wire Arc Additive Manufacturing Hybrid Interlayer High-Speed Friction
,”
Manuf. Lett.
,
33
, pp.
42
45
.
19.
Zhou
,
S.
,
Wang
,
J.
,
Yang
,
G.
,
Wu
,
B.
,
Xie
,
H.
,
Wu
,
K.
, and
An
,
D.
,
2022
, “
Periodic Microstructure of Al–Mg Alloy Fabricated by Inter-Layer Hammering Hybrid Wire Arc Additive Manufacturing: Formation Mechanism, Microstructural and Mechanical Characterization
,”
Mater. Sci. Eng.: A
,
860
, p.
144314
.
20.
Xiong
,
X.
,
Qin
,
X.
,
Hua
,
L.
,
Wan
,
G.
,
Hu
,
Z.
, and
Ni
,
M.
,
2022
, “
Microstructure Evolution and Parameters Optimization of Follow-Up Hammering-Assisted Hybrid Wire Arc Additive Manufacturing
,”
J. Manuf. Process.
,
84
, pp.
681
696
.
21.
Zhang
,
X.
,
Huang
,
S.
,
Li
,
D.
,
Geng
,
J.
,
Yang
,
F.
, and
Li
,
Q.
,
2022
, “
An Approach to Improve the Microstructure and Mechanical Properties: A Hybrid Manufacturing of Laser Directed Energy Deposition and Shot Peening
,”
Addit. Manuf.
,
55
, p.
102686
.
22.
Chi
,
J.
,
Cai
,
Z.
,
Wan
,
Z.
,
Zhang
,
H.
,
Chen
,
Z.
,
Li
,
L.
,
Li
,
Y.
,
Peng
,
P.
, and
Guo
,
W.
,
2020
, “
Effects of Heat Treatment Combined With Laser Shock Peening on Wire and Arc Additive Manufactured Ti17 Titanium Alloy: Microstructures, Residual Stress and Mechanical Properties
,”
Surf. Coat. Technol.
,
396
, p.
125908
.
23.
Feldhausen
,
T.
,
Raghavan
,
N.
,
Saleeby
,
K.
,
Love
,
L.
, and
Kurfess
,
T.
,
2021
, “
Mechanical Properties and Microstructure of 316L Stainless Steel Produced by Hybrid Manufacturing
,”
J. Mater. Process. Technol.
,
290
, p.
116970
.
24.
Benscoter
,
A. O.
, and
Bramfitt
,
B. L.
,
2004
, “
Metallography and Microstructures of Low-Carbon and Coated Steels
,”
ASM Handbook, Edited By George F. Vander Voort, ASM International
,
9
, pp.
588
607
.
25.
ASTM International
,
2023
, “Standard Test Methods for Determining Average Grain Size,” https://www.astm.org/e0112-13r21.html, Accessed June 2, 2023.
26.
ASTM International
,
2023
, “Standard Test Methods for Vickers Hardness and Knoop Hardness of Metallic Materials,” https://www.astm.org/e0092-17.html, Accessed June. 2, 2023.
27.
QustomApps
, “QustomWeld—Qustom Apps,” https://www.qustomapps.com/qustomweld/, Accessed June. 19, 2023.
28.
Gihr
,
M.
,
Rashid
,
A.
, and
Melkote
,
S. N.
,
2024
, “
Bead Geometry Prediction and Optimization for Corner Structures in Directed Energy Deposition Using Machine Learning
,”
Addit. Manuf.
,
84
, p.
104080
.
29.
Dinovitzer
,
M.
,
Chen
,
X.
,
Laliberte
,
J.
,
Huang
,
X.
, and
Frei
,
H.
,
2019
, “
Effect of Wire and Arc Additive Manufacturing (WAAM) Process Parameters on Bead Geometry and Microstructure
,”
Addit. Manuf.
,
26
, pp.
138
146
.
30.
Akkas
,
N.
,
Karayel
,
D.
,
Ozkan
,
S. S.
,
Oğur
,
A.
, and
Topal
,
B.
,
2013
, “
Modeling and Analysis of the Weld Bead Geometry in Submerged Arc Welding by Using Adaptive Neurofuzzy Inference System
,”
Math. Probl. Eng.
,
2013
, pp.
1
10
.
31.
Khanna
,
P.
, and
Maheshwari
,
S.
,
2018
, “
Development of Mathematical Models for Prediction and Control of Weld Bead Dimensions in MIG Welding of Stainless Steel 409M
,”
Mater. Today: Proc.
,
5
, pp.
4475
4488
.
32.
Ou
,
W.
,
Mukherjee
,
T.
,
Knapp
,
G. L.
,
Wei
,
Y.
, and
DebRoy
,
T.
,
2018
, “
Fusion Zone Geometries, Cooling Rates and Solidification Parameters During Wire Arc Additive Manufacturing
,”
Int. J. Heat Mass Transfer
,
127
, pp.
1084
1094
.
33.
Zhang
,
S.
,
Zhang
,
Y.
,
Gao
,
M.
,
Wang
,
F.
,
Li
,
Q.
, and
Zeng
,
X.
,
2019
, “
Effects of Milling Thickness on Wire Deposition Accuracy of Hybrid Additive/Subtractive Manufacturing
,”
Sci. Technol. Weld. Join.
,
24
(
5
), pp.
375
381
.
34.
Hönnige
,
J. R.
,
Colegrove
,
P. A.
,
Ganguly
,
S.
,
Eimer
,
E.
,
Kabra
,
S.
, and
Williams
,
S.
,
2018
, “
Control of Residual Stress and Distortion in Aluminium Wire + Arc Additive Manufacture With Rolling
,”
Addit. Manuf.
,
22
, pp.
775
783
.
35.
Bai
,
X.
,
Colegrove
,
P.
,
Ding
,
J.
,
Zhou
,
X.
,
Diao
,
C.
,
Bridgeman
,
P.
,
roman Hönnige
,
J.
,
Zhang
,
H.
, and
Williams
,
S.
,
2018
, “
Numerical Analysis of Heat Transfer and Fluid Flow in Multilayer Deposition of PAW-Based Wire and Arc Additive Manufacturing
,”
Int. J. Heat Mass Transfer
,
124
, pp.
504
516
.
36.
Wang
,
X.
,
Peng
,
X.
, and
Min
,
J.
,
2001
, “
Hysteresis of Contact Angle at Liquid Solid Interface
,”
Chin. J. Basic Sci. Eng.
,
9
(
4
), pp.
333
343
.
37.
Pyo
,
C.
,
Kim
,
J.
, and
Kim
,
J.
,
2020
, “
Estimation of Heat Source Model’s Parameters for GMAW With Non-Linear Global Optimization—Part I: Application of Multi-Island Genetic Algorithm
,”
Metals
,
10
(
7
), p.
885
.
38.
Goldak
,
J.
,
Chakravarti
,
A.
, and
Bibby
,
M.
,
n.d
, “
A New Finite Element Model for Welding Heat Sources
,”
Metall. Trans. B
,
15
(
2
), pp.
299
305
.
39.
Shassere
,
B.
,
Nycz
,
A.
,
Noakes
,
M.
,
Masuo
,
C.
, and
Sridharan
,
N.
,
2019
, “
Correlation of Microstructure and Mechanical Properties of Metal Big Area Additive Manufacturing
,”
Appl. Sci.
,
9
(
4
), p.
787
.
40.
Aldalur
,
E.
,
Veiga
,
F.
,
Suárez
,
A.
,
Bilbao
,
J.
, and
Lamikiz
,
A.
,
2020
, “
High Deposition Wire Arc Additive Manufacturing of Mild Steel: Strategies and Heat Input Effect on Microstructure and Mechanical Properties
,”
J. Manuf. Process.
,
58
, pp.
615
626
.
41.
Sridharan
,
N.
,
Noakes
,
M. W.
,
Nycz
,
A.
,
Love
,
L. J.
,
Dehoff
,
R. R.
, and
Babu
,
S. S.
,
2018
, “
On the Toughness Scatter in Low Alloy C-Mn Steel Samples Fabricated Using Wire Arc Additive Manufacturing
,”
Mater. Sci. Eng.: A
,
713
(
2018
), pp.
18
27
.
42.
Svensson
,
L. E.
, and
Gretoft
,
B.
,
1990
, “
Microstructure and Impact Toughness of C–Mn Weld Metals
,”
Weld. J.
,
69
(
12
), p.
454
.
43.
Grong
,
O.
, and
Matlock
,
D. K.
,
1986
, “
Microstructural Development in Mild and Low-Alloy Steel Weld Metals
,”
Int. Met. Rev.
,
31
(
1
), pp.
27
48
.
44.
Tweed
,
J. H.
, and
Knott
,
J. F.
,
1983
, “
Effect of Reheating on Microstructure and Toughness of C–Mn Weld Metal
,”
Met. Sci.
,
17
(
2
), pp.
45
54
.
45.
Digges
,
T. G.
, and
Rosenberg
,
S. J.
,
1966
, “
Heat Treatment and Properties of Iron and Steel
,”
Natl. Bureau Standards Monogr.
,
Supersedes Circular 495 and Monograph 18
(November 1, 1966), p.
0048
.
46.
Xu
,
X.
,
Zhang
,
J.
,
Outeiro
,
J.
,
Xu
,
B.
, and
Zhao
,
W.
,
2020
, “
Multiscale Simulation of Grain Refinement Induced by Dynamic Recrystallization of Ti6Al4V Alloy During High Speed Machining
,”
J. Mater. Process. Technol.
,
286
, p.
116834
.
47.
Ni
,
H.
, and
Alpas
,
A. T.
,
2003
, “
Sub-Micrometer Structures Generated During Dry Machining of Copper
,”
Mater. Sci. Eng.: A
,
361
(
1–2
), pp.
338
349
.
48.
Lee
,
W.-S.
, and
Liu
,
C.-Y.
,
2006
, “
The Effects of Temperature and Strain Rate on the Dynamic Flow Behaviour of Different Steels
,”
Mater. Sci. Eng.: A
,
426
(
1–2
), pp.
101
113
.
You do not currently have access to this content.