Abstract

This paper presents a new method to efficiently update workpiece and determine cutter-workpiece engagement (CWE) in multi-axis milling simulation based on a uniform voxel modeling space. At each cutter location, a novel algorithm named direct voxel tracing is developed and used to generate a functional cutter surface voxel model to reliably establish the internal space of the milling cutter. The cutter internal space is represented by its voxel boundary with small memory usage. Through the Boolean subtraction between two successive voxel boundaries of the cutter internal space, a minimal voxel deactivation region is attained within which all active workpiece voxels are deactivated (removed) to update the workpiece model. To determine the associated CWE map, a 3D circle voxelization algorithm is employed. By slicing the cutter surface by a sequence of planes perpendicular to and along the cutter axis, CWE can be determined as the sliced 3D circles are voxelized. Quantitative comparisons of the proposed method against existing voxel modeling and vector modeling-based methods have been made. The results have demonstrated much improved computational efficiency of the proposed method in simulating the complex multi-axis milling operations.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Altintas
,
Y.
,
Kersting
,
P.
,
Biermann
,
D.
,
Budak
,
E.
,
Denkena
,
B.
, and
Lazoglu
,
I.
,
2014
, “
Virtual Process Systems for Part Machining Operations
,”
CIRP Ann.
,
63
(
2
), pp.
585
605
.
2.
Chiou
,
C. J.
, and
Lee
,
Y. S.
,
2002
, “
Swept Surface Determination for Five-Axis Numerical Control Machining
,”
Int. J. Mach. Tools Manuf.
,
42
(
14
), pp.
1497
1507
.
3.
Du
,
S.
,
Surmann
,
T.
,
Webber
,
O.
, and
Weinert
,
K.
,
2005
, “
Formulating Swept Profiles for Five-Axis Tool Motions
,”
Int. J. Mach. Tools Manuf.
,
45
(
7–8
), pp.
849
861
.
4.
Joy
,
J.
, and
Feng
,
H. Y.
,
2017
, “
Efficient Milling Part Geometry Computation Via Three-Step Update of Frame-Sliced Voxel Representation Workpiece Model
,”
Int. J. Adv. Manuf. Technol.
,
92
(
5–8
), pp.
2365
2378
.
5.
Li
,
Z. L.
,
Wang
,
X. Z.
, and
Zhu
,
L. M.
,
2016
, “
Arc-Surface Intersection Method to Calculate Cutter-Workpiece Engagements for Generic Cutter in Five-Axis Milling
,”
Comput.-Aided Des.
,
73
, pp.
1
10
.
6.
Gong
,
X.
, and
Feng
,
H. Y.
,
2016
, “
Cutter-Workpiece Engagement Determination for General Milling Using Triangle Mesh Modeling
,”
J. Comput. Des. Eng.
,
3
(
2
), pp.
151
160
.
7.
Merdol
,
S. D.
, and
Altintas
,
Y.
,
2008
, “
Virtual Cutting and Optimization of Three-Axis Milling Processes
,”
Int. J. Mach. Tools Manuf.
,
48
(
10
), pp.
1063
1071
.
8.
Merdol
,
S. D.
, and
Altintas
,
Y.
,
2008
, “
Virtual Simulation and Optimization of Milling Operations-Part I: Process Simulation
,”
ASME J. Manuf. Sci. Eng.
,
130
(
5
), p.
051004
.
9.
Merdol
,
S. D.
, and
Altintas
,
Y.
,
2008
, “
Virtual Simulation and Optimization of Milling Applications-Part II: Optimization and Feedrate Scheduling
,”
ASME J. Manuf. Sci. Eng.
,
130
(
5
), p.
051005
.
10.
Geng
,
L.
,
Liu
,
P. L.
, and
Liu
,
K.
,
2015
, “
Optimization of Cutter Posture Based on Cutting Force Prediction for Five-Axis Machining With Ball-End Cutters
,”
Int. J. Adv. Manuf. Technol.
,
78
(
5–8
), pp.
1289
1303
.
11.
Spence
,
A. D.
, and
Altintas
,
Y.
,
1994
, “
A Solid Modeller Based Milling Process Simulation and Planning System
,”
ASME J. Manuf. Sci. Eng.
,
116
(
1
), pp.
61
69
.
12.
Spence
,
A. D.
,
Abrari
,
F.
, and
Elbestawi
,
M. A.
,
2000
, “
Integrated Solid Modeller Based Solutions for Machining
,”
Comput.-Aided Des.
,
32
(
8–9
), pp.
553
568
.
13.
Imani
,
B. M.
, and
Elbestawi
,
M. A.
,
2001
, “
Geometric Simulation of Ball-End Milling Operations
,”
ASME J. Manuf. Sci. Eng.
,
123
(
2
), pp.
177
184
.
14.
Ferry
,
W.
, and
Yip-Hoi
,
D.
,
2008
, “
Cutter-Workpiece Engagement Calculations by Parallel Slicing for Five-Axis Flank Milling of Jet Engine Impellers
,”
ASME J. Manuf. Sci. Eng.
,
130
(
5
), p.
051011
.
15.
Yang
,
Y.
,
Zhang
,
W.
,
Wan
,
M.
, and
Ma
,
Y.
,
2013
, “
A Solid Trimming Method to Extract Cutter-Workpiece Engagement Maps for Multi-axis Milling
,”
Int. J. Adv. Manuf. Technol.
,
68
(
9–12
), pp.
2801
2813
.
16.
Aras
,
E.
, and
Albedah
,
A.
,
2014
, “
Extracting Cutter/Workpiece Engagements in Five-Axis Milling Using Solid Modeler
,”
Int. J. Adv. Manuf. Technol.
,
73
(
9–12
), pp.
1351
1362
.
17.
Hsu
,
P. L.
, and
Yang
,
W. T.
,
1993
, “
Realtime 3D Simulation of 3-Axis Milling Using Isometric Projection
,”
Comput.-Aided Des.
,
25
(
4
), pp.
215
224
.
18.
Kim
,
G. M.
,
Cho
,
P. J.
, and
Chu
,
C. N.
,
2000
, “
Cutting Force Prediction of Sculptured Surface Ball-End Milling Using Z-Map
,”
Int. J. Mach. Tools Manuf.
,
40
(
2
), pp.
277
291
.
19.
Hook
,
T. V.
,
1986
, “
Real-Time Shaded NC Milling Display
,”
Proceedings of the 13th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH ‘86)
,
Dallas, TX
,
Aug. 18–22
, pp.
15
20
.
20.
Fussell
,
B. K.
,
Jerard
,
R. B.
, and
Hemmett
,
J. G.
,
2003
, “
Modeling of Cutting Geometry and Forces for 5-Axis Sculptured Surface Machining
,”
Comput.-Aided Des.
,
35
(
4
), pp.
333
346
.
21.
Benouamer
,
M. O.
, and
Michelucci
,
D.
,
1997
, “
Bridging the Gap Between CSG and Brep Via a Triple Ray Representation
,”
Proceedings of the Fourth ACM Symposium on Solid Modeling and Applications
,
Atlanta, GA
,
May 14–16
, pp.
68
79
.
22.
Boz
,
Y.
,
Erdim
,
H.
, and
Lazoglu
,
I.
,
2015
, “
A Comparison of Solid Model and Three-Orthogonal Dexelfield Methods for Cutter-Workpiece Engagement Calculations in Three- and Five-Axis Virtual Milling
,”
Int. J. Adv. Manuf. Technol.
,
81
(
5–8
), pp.
811
823
.
23.
Jang
,
D.
,
Kim
,
K.
, and
Jung
,
J.
,
2000
, “
Voxel-Based Virtual Multi-axis Machining
,”
Int. J. Adv. Manuf. Technol.
,
16
(
10
), pp.
709
713
.
24.
Yousefian
,
O.
,
Balabokhin
,
A.
, and
Tarbutton
,
J.
,
2018
, “
Point-by-Point Prediction of Cutting Force in 3-Axis CNC Milling Machines Through Voxel Framework in Digital Manufacturing
,”
J. Intell. Manuf.
,
31
(
1
), pp.
215
226
.
25.
Nie
,
Z.
, and
Feng
,
H. Y.
,
2023
, “
Integrated and Efficient Cutter-Workpiece Engagement Determination in Three-Axis Milling Via Voxel Modeling
,”
Int. J. Adv. Manuf. Technol.
,
128
(
1–2
), pp.
391
403
.
26.
Joy
,
J.
, and
Feng
,
H. Y.
,
2017
, “
Frame-Sliced Voxel Representation: An Accurate and Memory-Efficient Modeling Method for Workpiece Geometry in Machining Simulation
,”
Comput.-Aided Des.
,
88
, pp.
1
13
.
27.
Yau
,
H. T.
, and
Tsou
,
L. S.
,
2009
, “
Efficient NC Simulation for Multi-axis Solid Machining With a Universal APT Cutter
,”
ASME J. Comput. Inf. Sci. Eng.
,
9
(
2
), p.
021001
.
28.
Lynn
,
R.
,
Dinar
,
M.
,
Huang
,
N.
,
Collins
,
J.
,
Yu
,
J.
,
Greer
,
C.
,
Tucker
,
T.
, and
Kurfess
,
T.
,
2018
, “
Direct Digital Subtractive Manufacturing of a Functional Assembly Using Voxel-Based Models
,”
ASME J. Manuf. Sci. Eng.
,
140
(
2
), p.
021006
.
29.
Crassin
,
C.
,
Neyret
,
F.
,
Lefebvre
,
S.
, and
Eisemann
,
E.
,
2009
, “
GigaVoxels: Ray-Guided Streaming for Efficient and Detailed Voxel Rendering
,”
Proceedings of the 2009 Symposium on Interactive 3D Graphics and Games
,
Boston, MA
,
Feb. 27–Mar. 1
, pp.
15
22
.
30.
Akenine-Möller
,
T.
,
2001
, “
Fast 3D Triangle-Box Overlap Testing
,”
J. Graph. Tool.
,
6
(
1
), pp.
29
33
.
31.
Cohen-Or
,
D.
, and
Kaufman
,
A.
,
1995
, “
Fundamentals of Surface Voxelization
,”
Graph. Models Image Process.
,
57
(
6
), pp.
453
461
.
32.
Smith
,
A. R.
,
1979
, “
Tint Fill
,”
Comput. Graphics
,
13
(
2
), pp.
276
283
.
33.
Cohen
,
D.
, and
Kaufman
,
A.
,
1990
, “Scan-Conversion Algorithms for Linear and Quadratic Objects,”
Volume Visualization
,
A.
Kaufman
, ed.,
IEEE Computer Society Press
,
Los Alamitos, CA
, pp.
280
301
.
34.
Aras
,
E.
,
2009
, “
Generating Cutter Swept Envelopes in Five-Axis Milling by Two-Parameter Families of Spheres
,”
Comput.-Aided Des.
,
41
(
2
), pp.
95
105
.
You do not currently have access to this content.