Abstract

The in situ imaging of the cutting process exhibits outstanding advantages in reconstructing the precise and visual thermoplastic deformation fields. The physical and geometric characteristics of deformation fields provide a deeper understanding of the cutting processes. In this paper, a mechanism-image hybrid analysis method is proposed to acquire the characteristics of the serrated chip deformation in the orthogonal cutting of TA15 titanium alloy based on in situ imaging. The established hybrid analysis method combines the shear-plane theory with the streamline method and image segmentation method, which realizes the identification of pixel coordinates of the main shear plane (MSP) and the primary shear zone (PSZ) and then the extraction of the physical and geometric variables from the digital image correlation (DIC) full-field measurements. Consequently, the variations of equivalent strain rate, strain, temperature, and the geometric characterizations of MSP and PSZ during an individual serration formation of TA15 titanium alloy were quantitatively investigated. It was found that the physical and geometric variables reached stability in the final stage of serration evolution and were averaged as the DIC-based equivalent characterizations to analyze the impact of cutting depth and tool rake angle. Meanwhile, the DIC-based equivalent characterizations were compared with the results obtained by the classical analytical models to illustrate the advantages of the DIC-based analysis. The findings also support that the established hybrid analysis method holds the potential to characterize the serrated chip formation of other materials and improve the models of PSZ.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Sagapuram
,
D.
,
Udupa
,
A.
,
Viswanathan
,
K.
,
Mann
,
J. B.
,
M'Saoubi
,
R.
,
Sugihara
,
T.
, and
Chandrasekar
,
S.
,
2020
, “
On the Cutting of Metals: A Mechanics Viewpoint
,”
ASME J. Manuf. Sci. Eng.
,
142
(
11
), p.
110808
.
2.
La Monaca
,
A.
,
Murray
,
J. W.
,
Liao
,
Z.
,
Speidel
,
A.
,
Robles-Linares
,
J. A.
,
Axinte
,
D. A.
,
Hardy
,
M. C.
, and
Clare
,
A. T.
,
2021
, “
Surface Integrity in Metal Machining—Part II: Functional Performance
,”
Int. J. Mach. Tools Manuf.
,
164
, p.
103718
.
3.
Liu
,
D.
,
Ni
,
C.
,
Wang
,
Y.
, and
Zhu
,
L.
,
2024
, “
Review of Serrated Chip Characteristics and Formation Mechanism From Conventional to Additively Manufactured Titanium Alloys
,”
J. Alloys Compd.
,
970
, p.
172573
.
4.
Jawahir
,
I.
,
Stephenson
,
D.
, and
Wang
,
B.
,
2022
, “
A Review of Advances in Modeling of Conventional Machining Processes: From Merchant to the Present
,”
ASME J. Manuf. Sci. Eng.
,
144
(
11
), p.
110801
.
5.
Merchant
,
M. E.
,
1944
, “
Basic Mechanics of the Metal Cutting Process
,”
ASME J. Appl. Mech.
,
66
(
3
), pp.
168
175
.
6.
Sujuan
,
W.
,
Tao
,
Z.
,
Wenping
,
D.
,
Zhanwen
,
S.
, and
To
,
S.
,
2021
, “
Analytical Modeling and Prediction of Cutting Forces in Orthogonal Turning: A Review
,”
Int. J. Adv. Manuf. Technol.
,
119
(
3–4
), pp.
1
28
.
7.
Bai
,
W.
,
Sun
,
R.
,
Roy
,
A.
, and
Silberschmidt
,
V. V.
,
2017
, “
Improved Analytical Prediction of Chip Formation in Orthogonal Cutting of Titanium Alloy Ti6Al4V
,”
Int. J. Mech. Sci.
,
133
, pp.
357
367
.
8.
Maroju
,
N. K.
, and
Jin
,
X.
,
2019
, “
Mechanism of Chip Segmentation in Orthogonal Cutting of Zr-Based Bulk Metallic Glass
,”
ASME J. Manuf. Sci. Eng.
,
141
(
8
), p.
081003
.
9.
Weng
,
J.
,
Zhuang
,
K.
,
Hu
,
C.
, and
Ding
,
H.
,
2020
, “
A PSO-Based Semi-analytical Force Prediction Model for Chamfered Carbide Tools Considering Different Material Flow State Caused by Edge Geometry
,”
Int. J. Mech. Sci.
,
169
, p.
105329
.
10.
Sharma
,
S.
, and
Meena
,
A.
,
2021
, “
Microstructure Induced Shear Instability Criterion During High-Speed Machining of Ti–6Al–4V
,”
ASME J. Manuf. Sci. Eng.
,
143
(
6
), p.
061001
.
11.
Li
,
G.
,
Xu
,
W.
,
Jin
,
X.
,
Liu
,
L.
,
Ding
,
S.
, and
Li
,
C.
,
2023
, “
The Machinability of Stainless Steel 316 L Fabricated by Selective Laser Melting: Typical Cutting Responses, White Layer and Evolution of Chip Morphology
,”
J. Mater. Process. Technol.
,
315
, p.
117926
.
12.
Davis
,
J.
,
Saei
,
M.
,
Pinaki
,
D.
,
Udupa
,
A.
,
Sugihara
,
T.
, and
Chandrasekar
,
S.
,
2020
, “
Cutting of Tantalum: Why It Is So Difficult and What Can Be Done About It
,”
Int. J. Mach. Tools Manuf.
,
157
, p.
103607
.
13.
Zannoun
,
H.
, and
Schoop
,
J.
,
2023
, “
Analysis of Burr Formation in Finish Machining of Nickel-Based Superalloy With Worn Tools Using Micro-Scale In-Situ Techniques
,”
Int. J. Mach. Tools Manuf.
,
189
, p.
104030
.
14.
Guo
,
Y.
,
Chen
,
J.
, and
Saleh
,
A.
,
2020
, “
In Situ Analysis of Deformation Mechanics of Constrained Cutting Toward Enhanced Material Removal
,”
ASME J. Manuf. Sci. Eng.
,
142
(
2
), p.
021002
.
15.
Chandan
,
A.
,
Kumar
,
A.
, and
Mahato
,
A.
,
2023
, “
In Situ Analysis of Flow Characteristic and Deformation Field of Metal Surface in Sliding Asperity Contact
,”
Tribol. Int.
,
189
, p.
108947
.
16.
Brown
,
M.
,
M'Saoubi
,
R.
,
Crawforth
,
P.
,
Mantle
,
A.
,
McGourlay
,
J.
, and
Ghadbeigi
,
H.
,
2022
, “
On Deformation Characterisation of Machined Surfaces and Machining-Induced White Layers in a Milled Titanium Alloy
,”
J. Mater. Process. Technol.
,
299
, p.
117378
.
17.
List
,
G.
,
Sutter
,
G.
,
Bi
,
X.
,
Molinari
,
A.
, and
Bouthiche
,
A.
,
2013
, “
Strain, Strain Rate and Velocity Fields Determination at Very High Cutting Speed
,”
J. Mater. Process. Technol.
,
213
(
5
), pp.
693
699
.
18.
Zhang
,
D.
,
Zhang
,
X.-M.
,
Nie
,
G.-C.
,
Yang
,
Z.-Y.
, and
Ding
,
H.
,
2021
, “
Characterization of Material Strain and Thermal Softening Effects in the Cutting Process
,”
Int. J. Mach. Tools Manuf.
,
160
, p.
103672
.
19.
Zhang
,
D.
,
Meurer
,
M.
,
Zhang
,
X. M.
,
Bergs
,
T.
, and
Ding
,
H.
,
2021
, “
Understanding Kinematics of the Orthogonal Cutting Using Digital Image Correlation—Measurement and Analysis
,”
ASME J. Manuf. Sci. Eng.
,
114
(
3
), p.
031008
.
20.
Thimm
,
B.
,
Glavas
,
A.
,
Reuber
,
M.
, and
Christ
,
H.-J.
,
2021
, “
Determination of Chip Speed and Shear Strain Rate in Primary Shear Zone Using Digital Image Correlation (DIC) in Linear-Orthogonal Cutting Experiments
,”
J. Mater. Process. Technol.
,
289
, p.
116957
.
21.
Harzallah
,
M.
,
Pottier
,
T.
,
Gilblas
,
R.
,
Landon
,
Y.
,
Mousseigne
,
M.
, and
Senatore
,
J.
,
2018
, “
A Coupled In-Situ Measurement of Temperature and Kinematic Fields in Ti-6Al-4V Serrated Chip Formation at Micro-scale
,”
Int. J. Mach. Tools Manuf.
,
130–131
, pp.
20
35
.
22.
Ma
,
K.
,
Liu
,
Z.
,
Wang
,
B.
,
Zhang
,
H.
,
Song
,
Q.
, and
Liu
,
H.
,
2023
, “
In-Situ DIC Measurement of Material Deformation Through Spatial–Temporal Kinematics Analysis During Orthogonal Cutting Ti6Al4V
,”
Measurement
,
207
, p.
112367
.
23.
Wang
,
H.
,
Satake
,
U.
, and
Enomoto
,
T.
,
2023
, “
Serrated Chip Formation Mechanism in Orthogonal Cutting of Cortical Bone at Small Depths of Cut
,”
J. Mater. Process. Technol.
,
319
, p.
118097
.
24.
Li
,
S.
,
Li
,
S.
,
Liu
,
L.
,
Gao
,
L.
,
Fu
,
Y.
,
Zhang
,
X.
, and
Li
,
B.
,
2023
, “
High Temperature Softening Mechanism of Powder Metallurgy TA15 Alloy
,”
Mater. Sci. Eng. A
,
877
, p.
145160
.
25.
Yang
,
M.
,
Deng
,
B.
,
Peng
,
F.
,
Rong
,
Y.
, and
Huang
,
Y.
,
2022
, “
Effects of Material Properties on Micro-Scale Cutting of TA15 Alloy and Network-Structured TiBw/TA15 Composites
,”
ASME J. Manuf. Sci. Eng.
,
144
(
10
), p.
101005
.
26.
Agrawal
,
A.
, and
Dawson
,
P. R.
,
1985
, “
A Comparison of Galerkin and Streamline Techniques for Integrating Strains From an Eulerian Flow Field
,”
Int. J. Numer. Methods Eng.
,
21
(
5
), pp.
853
881
.
27.
Zhu
,
G.
,
Zheng
,
S.
,
Xu
,
Q.
,
Qiu
,
M.
,
Wang
,
H.
, and
Weng
,
S.
,
2023
, “
Detection of Fungal Infection in Apple Using Hyperspectral Transformation of RGB Images With Kernel Regression
,”
Postharvest Biol. Technol.
,
206
, p.
112570
.
28.
Davis
,
B.
,
Dabrow
,
D.
,
Ifju
,
P.
,
Xiao
,
G.
,
Liang
,
S. Y.
, and
Huang
,
Y.
,
2018
, “
Study of the Shear Strain and Shear Strain Rate Progression During Titanium Machining
,”
ASME J. Manuf. Sci. Eng.
,
140
(
5
), p.
051007
.
29.
Xu
,
B.
,
Zhang
,
J.
,
Liu
,
X.
,
Liu
,
H.
, and
Zhao
,
W.
,
2023
, “
Fully Coupled Thermomechanical Simulation of Laser-Assisted Machining Ti6Al4V Reveals the Mechanism of Morphological Evolution During Serrated Chip Formation
,”
J. Mater. Process. Technol.
,
315
, p.
117925
.
30.
Chen
,
X.
,
Tang
,
J.
,
Ding
,
H.
, and
Liu
,
A.
,
2021
, “
A New Geometric Model of Serrated Chip Formation in High-Speed Machining
,”
J. Manuf. Process.
,
62
, pp.
632
645
.
31.
Wang
,
B.
,
Xiao
,
X.
,
Astakhov
,
V. P.
, and
Liu
,
Z.
,
2020
, “
A Quantitative Analysis of the Transition of Fracture Mechanisms of Ti6Al4V Over a Wide Range of Stress Triaxiality and Strain Rate
,”
Eng. Fract. Mech.
,
231
, p.
107020
.
32.
Zhou
,
L.
,
Peng
,
F.
,
Yan
,
R.
,
Yao
,
P.
,
Yang
,
C.
, and
Li
,
B.
,
2015
, “
Analytical Modeling and Experimental Validation of Micro End-Milling Cutting Forces Considering Edge Radius and Material Strengthening Effects
,”
Int. J. Mach. Tools Manuf.
,
97
, pp.
29
41
.
33.
Tounsi
,
N.
,
Vincenti
,
J.
,
Otho
,
A.
, and
Elbestawi
,
M.
,
2002
, “
From the Basic Mechanics of Orthogonal Metal Cutting Toward the Identification of the Constitutive Equation
,”
Int. J. Mach. Tools Manuf.
,
42
(
12
), pp.
1373
1383
.
34.
Li
,
B.
,
Wang
,
X.
,
Hu
,
Y.
, and
Li
,
C.
,
2011
, “
Analytical Prediction of Cutting Forces in Orthogonal Cutting Using Unequal Division Shear-Zone Model
,”
Int. J. Adv. Manuf. Technol.
,
54
(
5–8
), pp.
431
443
.
You do not currently have access to this content.