Abstract

Cryogenic medium pressure forming has been developed to form the complex-shaped tubular components, in which the needed shape and tube diameter directly determine the complex evolution of biaxial stress in bulging process. The superposition of biaxial stress and cryogenic temperature complicates the deformation behaviors, especially for the final fracture and bulging limit, which determine the forming quality of components. Therefore, the effects of tube geometry on failure orientation and fracture strain of Al–Mg–Si alloy tubes under cryogenic biaxial stress were elucidated, by utilizing cryogenic free bulging with different length–diameter ratios. The failure orientations and corresponding damage modes under different bulging geometric conditions were revealed. The influence mechanism of tube geometry and temperature on the failure mode was analyzed theoretically. A fracture model was established to predict the fracture strain in cryogenic bulging. The failure mode changes from circumferential cracking to axial cracking with the decreasing length–diameter ratio, owing to the stress sequence reversal induced by the significant nonlinearity of the stress path under a small length–diameter ratio. The failure mode can inverse under a larger length–diameter ratio of 1.0 at −196 °C because of the enhanced nonlinearity, which is promoted by the improved plasticity at cryogenic temperature. The established model based on the more accurate assessment of hardening ability during deformation can accurately predict the fracture strain with an average deviation of 10.6% at different temperatures. The study can guide deformation analysis and failure prediction in the cryogenic forming of aluminum alloy tubular parts.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Chen
,
Y.
,
Xiang
,
W.
,
Zhang
,
Q.
,
Wang
,
H.
, and
Hua
,
L.
,
2024
, “
Improvement of Ni-CFRP Interfacial Properties Using Compound Coupling Agent Treatment
,”
Thin Walled Struct.
,
195
, p.
111334
.
2.
Kozłowska
,
A.
,
Grajcar
,
A.
,
Opara
,
J.
,
Kaczmarczyk
,
J.
,
Janik
,
A.
, and
Radwański
,
K.
,
2022
, “
Mechanical Behaviour and Micromechanical Modelling of Medium-Mn Steel Microstructure Evolution
,”
Int. J. Mech. Sci.
,
220
, p.
107151
.
3.
Cheng
,
J. C.
,
Zhang
,
S.
,
Liu
,
Q.
,
Ye
,
S. J.
,
Luo
,
S. N.
,
Cai
,
Y.
, and
Huang
,
J. Y.
,
2022
, “
Ballistic Impact Experiments and Modeling on Impact Cratering, Deformation and Damage of 2024-T4 Aluminum Alloy
,”
Int. J. Mech. Sci.
,
224
, p.
107312
.
4.
Rong
,
H.
,
Hu
,
P.
,
Ying
,
L.
,
Hou
,
W. B.
, and
Dai
,
M. H.
,
2022
, “
Modeling the Anisotropic Plasticity and Damage of AA7075 Alloy in Hot Forming
,”
Int. J. Mech. Sci.
,
215
, p.
106951
.
5.
Cui
,
X. L.
, and
Yuan
,
S. J.
,
2021
, “
Analysis of Thickness Variation and Stress State in Hydroforming of Complex T-Shaped Tubular Part of Nickel-Based Superalloy
,”
Arch. Civ. Mech. Eng.
,
21
(
3
), p.
111
.
6.
Lin
,
C. Y.
,
Chu
,
G. N.
,
Sun
,
L.
,
Chen
,
G.
,
Liu
,
P. X.
, and
Sun
,
W. H.
,
2021
, “
Radial Hydro-Forging Bending: A Novel Method to Reduce the Springback of AHSS Tubular Component
,”
Int. J. Mach. Tools Manuf.
,
160
, p.
103650
.
7.
Bihamta
,
R.
,
D’Amours
,
G.
,
Bui
,
Q. H.
,
Guillot
,
M.
,
Rahem
,
A.
, and
Fafard
,
M.
,
2013
, “
Numerical and Experimental Studies on the New Design Concept of Hydroforming Dies for Complex Tubes
,”
Mater. Des.
,
47
, pp.
766
778
.
8.
Lei
,
Q.
,
Li
,
M.
,
Ilinich
,
A.
,
Luckey
,
G.
, and
Misra
,
A.
,
2019
, “
Microstructural Evolution and Failure Mechanism of an Extrusion Welded Aluminum Alloy Tube During Hydroforming Processing
,”
Mater. Sci. Eng. A
,
756
, pp.
346
353
.
9.
Hwang
,
Y. M.
, and
Wu
,
R. K.
,
2017
, “
Process and Loading Path Design for Hydraulic Compound Forming of Rectangular Tubes
,”
Int. J. Adv. Manuf. Technol.
,
91
(
5–8
), pp.
2135
2142
.
10.
Raj
,
J. S. S.
,
Christopher
,
T.
, and
Kalaichelvan
,
K.
,
2019
, “
Process Parameter Correlation in Low Pressure Hydro Forming of 6063-O Aluminium Tubes
,”
Mechanika
,
25
(
1
), pp.
64
72
.
11.
Chu
,
G. N.
,
Chen
,
G.
,
Lin
,
Y. L.
, and
Yuan
,
S. J.
,
2019
, “
Tube Hydro-Forging – A Method to Manufacture Hollow Component With Varied Cross-Section Perimeters
,”
J. Mater. Process. Technol.
,
265
, pp.
150
157
.
12.
Lei
,
S.
,
Lin
,
C. Y.
,
Wang
,
G. D.
,
Yao
,
S. J.
, and
Chu
,
G. N.
,
2020
, “
Investigation of Thickness Variation in Axial Hydro-Forging Sequence for Variable-Diameter Tubes
,”
J. Manuf. Process.
,
60
, pp.
553
562
.
13.
Chu
,
G. N.
,
Sun
,
L.
,
Wang
,
G. D.
,
Fan
,
Z. G.
, and
Li
,
H.
,
2019
, “
Axial Hydro-Forging Sequence for Variable-Diameter Tube of 6063 Aluminum Alloy
,”
J. Mater. Process. Technol.
,
272
, pp.
87
99
.
14.
Cui
,
X. L.
,
Chu
,
R. H.
,
He
,
J. Q.
,
Han
,
C.
, and
Yuan
,
S. J.
,
2021
, “
Less-Loading Hydroforming Process for Large-Size Hollow Components of Aluminum Alloy
,”
J. Mater. Res. Technol.
,
15
, pp.
1935
1948
.
15.
Yuan
,
S. J.
,
2021
, “
Fundamentals and Processes of Fluid Pressure Forming Technology for Complex Thin-Walled Components
,”
Engineering
,
7
(
3
), pp.
358
366
.
16.
Hua
,
L.
,
Zhang
,
W. P.
,
Ma
,
H. J.
, and
Hu
,
Z. L.
,
2021
, “
Investigation of Formability, Microstructures and Post-Forming Mechanical Properties of Heat-Treatable Aluminum Alloys Subjected to Pre-Aged Hardening Warm Forming
,”
Int. J. Mach. Tools Manuf.
,
169
, p.
103799
.
17.
Feng
,
Z. Z.
,
Liu
,
C. H.
,
Ma
,
P. P.
,
Yang
,
J. S.
,
Cheng
,
K. L.
,
Li
,
G. H.
, et al
,
2021
, “
Initial Holding Time Dependent Warm Deformation and Post-Ageing Precipitation in an AA7075-T4 Aluminum Alloy
,”
J. Mater. Process. Technol.
,
294
, p.
117111
.
18.
Lu
,
Y. H.
,
Zhu
,
S. C.
,
Zhao
,
Z. T.
,
Chen
,
T. L.
, and
Zeng
,
J.
,
2020
, “
Numerical Simulation of Residual Stresses in Aluminum Alloy Welded Joints
,”
J. Manuf. Process.
,
50
, pp.
380
393
.
19.
Kohandehghan
,
A. R.
, and
Serajzadeh
,
S.
,
2011
, “
Arc Welding Induced Residual Stress in Butt-Joints of Thin Plates Under Constraints
,”
J. Manuf. Process.
,
13
(
2
), pp.
96
103
.
20.
Yi
,
J.
,
Zhang
,
J. M.
,
Cao
,
S. F.
, and
Guo
,
P. C.
,
2019
, “
Effect of Welding Sequence on Residual Stress and Deformation of 6061-T6 Aluminium Alloy Automobile Component
,”
Trans. Nonferrous Met. Soc. China
,
29
(
2
), pp.
287
295
.
21.
He
,
Z. B.
,
Fan
,
X. B.
,
Shao
,
F.
,
Zheng
,
K. L.
,
Wang
,
Z. B.
, and
Yuan
,
S. J.
,
2012
, “
Formability and Microstructure of AA6061 Al Alloy Tube for Hot Metal Gas Forming at Elevated Temperature
,”
Trans. Nonferrous Met. Soc. China
,
22
, pp.
364
369
.
22.
Talebi-Anaraki
,
A.
,
Chougan
,
M.
,
Loh-Mousavi
,
M.
, and
Maeno
,
T.
,
2020
, “
Hot Gas Forming of Aluminum Alloy Tubes Using Flame Heating
,”
J. Manuf. Mater. Process.
,
4
(
2
), p.
56
.
23.
Lang
,
L. H.
,
Liu
,
K. N.
,
Cai
,
G. S.
,
Yang
,
X. Y.
,
Guo
,
C.
, and
Bu
,
G. L.
,
2014
, “
A Critical Review on Special Forming Processes and Associated Research for Lightweight Components Based on Sheet and Tube Materials
,”
Manuf. Rev.
,
1
, p.
9
.
24.
Huang
,
C. Q.
,
Deng
,
J.
,
Wang
,
S. X.
, and
Liu
,
L. L.
,
2017
, “
A Physical-Based Constitutive Model to Describe the Strain-Hardening and Dynamic Recovery Behaviors of 5754 Aluminum Alloy
,”
Mater. Sci. Eng. A
,
699
, pp.
106
113
.
25.
Rezaei Ashtiani
,
H. R.
, and
Shahsavari
,
P.
,
2016
, “
Strain-Dependent Constitutive Equations to Predict High Temperature Flow Behavior of AA2030 Aluminum Alloy
,”
Mech. Mater.
,
100
, pp.
209
218
.
26.
Fakir
,
O. E.
,
Wang
,
L.
,
Balint
,
D.
,
Dear
,
J. P.
,
Lin
,
J.
, and
Dean
,
T. A.
,
2014
, “
Numerical Study of the Solution Heat Treatment, Forming, and In-Die Quenching (HFQ) Process on AA5754
,”
Int. J. Mach. Tools Manuf.
,
87
, pp.
39
48
.
27.
Zheng
,
K. L.
,
Dong
,
Y. C.
,
Zheng
,
D. Q.
,
Lin
,
J. G.
, and
Dean
,
T. A.
,
2019
, “
An Experimental Investigation on the Deformation and Post-Formed Strength of Heat-Treatable Aluminium Alloys Using Different Elevated Temperature Forming Processes
,”
J. Mater. Process. Technol.
,
268
, pp.
87
96
.
28.
Chen
,
Y.
,
Zhao
,
S.
,
Wang
,
H.
,
Li
,
J.
, and
Hua
,
L.
,
2023
, “
Theoretical Analysis and Verification on Plastic Deformation Behavior of Rocket Nozzle Using a Novel Tube Upsetting-Bulging Method
,”
Materials
,
16
(
4
), p.
1680
.
29.
Zheng
,
K. L.
,
Politis
,
D. J.
,
Wang
,
L. L.
, and
Lin
,
J. G.
,
2018
, “
A Review on Forming Techniques for Manufacturing Lightweight Complex-Shaped Aluminum Panel Components
,”
Int. J. Lightweight Mater. Manuf.
,
1
(
2
), pp.
55
80
.
30.
Zheng
,
J. H.
,
Dong
,
Y. C.
,
Zheng
,
K. L.
,
Dong
,
H. S.
,
Lin
,
J. G.
,
Jiang
,
J.
, and
Dean
,
T. A.
,
2019
, “
Experimental Investigation of Novel Fast-Ageing Treatments for AA6082 in Supersaturated Solid Solution State
,”
J. Alloys Compd.
,
810
, p.
151934
.
31.
Li
,
Z. X.
,
Zhan
,
M.
,
Fan
,
X. G.
,
Wang
,
X. X.
,
Ma
,
F.
, and
Li
,
R.
,
2020
, “
Multi-Mode Distortion Behavior of Aluminum Alloy Thin Sheets in Immersion Quenching
,”
J. Mater. Process. Technol.
,
279
, p.
116576
.
32.
Xiong
,
H. Q.
,
Su
,
L. H.
,
Kong
,
C.
, and
Yu
,
H. L.
,
2021
, “
Development of High Performance of Al Alloys via Cryo-Forming: A Review
,”
Adv. Eng. Mater.
,
23
(
6
), p.
2001533
.
33.
Simonetto
,
E.
,
Bertolini
,
R.
,
Ghiotti
,
A.
, and
Bruschi
,
S.
,
2020
, “
Mechanical and Microstructural Behaviour of AA7075 Aluminium Alloy for Sub-Zero Temperature Sheet Stamping Process
,”
Int. J. Mech. Sci.
,
187
, p.
105919
.
34.
Xu
,
Z. B.
,
Roven
,
H. J.
, and
Jia
,
Z. H.
,
2017
, “
Effects of Cryogenic Temperature and Pre-Stretching on Mechanical Properties and Deformation Characteristics of a Peak-Aged AA6082 Extrusion
,”
Mater. Sci. Eng. A
,
679
, pp.
379
390
.
35.
Gruber
,
B.
,
Weißensteiner
,
I.
,
Kremmer
,
T.
,
Grabner
,
F.
,
Falkinger
,
G.
, et al
,
2020
, “
Mechanism of Low Temperature Deformation in Aluminium Alloys
,”
Mater. Sci. Eng. A
,
795
, p.
139935
.
36.
Wang
,
C. G.
,
Yi
,
Y. P.
,
Huang
,
S. Q.
,
Dong
,
F.
,
He
,
H. L.
,
Huang
,
K.
, et al
,
2021
, “
Experimental and Theoretical Investigation on the Forming Limit of 2024-O Aluminum Alloy Sheet at Cryogenic Temperatures
,”
Met. Mater. Int.
,
2
, pp.
5199
5211
.
37.
Wang
,
X. G.
,
Fan
,
X. B.
,
Chen
,
X. S.
, and
Yuan
,
S. J.
,
2022
, “
Forming Limit of 6061 Aluminum Alloy Tube at Cryogenic Temperatures
,”
J. Mater. Process. Technol.
,
306
, p.
117649
.
38.
Schneider
,
R.
,
Grant
,
R. J.
,
Heine
,
B.
,
Börret
,
R.
,
Burger
,
S.
, and
Zouaoui
,
Z.
,
2014
, “
An Analysis of the Surface Quality of AA5182 at Different Testing Temperatures
,”
Mater. Des.
,
64
, pp.
750
754
.
39.
Huang
,
K.
,
Huang
,
S. Q.
,
Yi
,
Y. P.
,
Dong
,
F.
, and
He
,
H. L.
,
2022
, “
Flow Behavior and Forming Characteristics of 2A14 Aluminum Alloy at Cryogenic Temperatures
,”
J. Alloy Compd.
,
902
, p.
163821
.
40.
Liu
,
W.
, and
Hao
,
Y. G.
,
2021
, “
Damage and Fracture Prediction of 7075 High-Strength Aluminum Alloy During Cryogenic Stamping Process
,”
Mech. Mater.
,
163
, p.
104080
.
41.
Schneider
,
R.
,
Grant
,
R. J.
,
Schlosser
,
J. M.
,
Rimkus
,
W.
,
Radlmayr
,
K.
, et al
,
2020
, “
An Investigation of the Deep Drawing Behavior of Automotive Aluminum Alloys at Very Low Temperatures
,”
Metall. Mater. Trans. A
,
51
(
3
), pp.
1123
1133
.
42.
Grabner
,
F.
,
Österreicher
,
J. A.
,
Gruber
,
B.
,
Papenberg
,
N.
,
Gerstner
,
F.
,
Kirnstötter
,
S.
, et al
,
2019
, “
Cryogenic Forming of Al-Mg Alloy Sheet for Car Outer Body Applications
,”
Adv. Eng. Mater.
,
21
(
8
), p.
1900089
.
43.
Kumar
,
M.
,
Sotirov
,
N.
,
Grabner
,
F.
,
Schneider
,
R.
, and
Mozdzen
,
G.
,
2017
, “
Cryogenic Forming Behaviour of AW-6016-T4 Sheet
,”
Trans. Nonferrous Met. Soc. China
,
27
(
6
), pp.
1257
1263
.
44.
Fan
,
X. B.
, and
Yuan
,
S. J.
,
2022
, “
Innovation for Forming Aluminum Alloy Thin Shells at Ultra-Low Temperature by the Dual Enhancement Effect
,”
Int. J. Extreme Manuf.
,
4
(
3
), p.
033001
.
45.
Yuan
,
S. J.
, and
Fan
,
X. B.
,
2021
, “Method for Pressure Forming of Aluminum Alloy Special-Shaped Tubular Component by Using Ultra Low Temperature Medium.” US Patent No. US10960452B2.
46.
Wang
,
X. G.
,
Fan
,
X. B.
,
Chen
,
X. S.
, and
Yuan
,
S. J.
,
2022
, “
Cryogenic Deformation Behavior of 6061 Aluminum Alloy Tube Under Biaxial Tension Condition
,”
J. Mater. Process. Technol.
,
303
, p.
117532
.
47.
Lin
,
Y. L.
,
He
,
Z. B.
, and
Yao
,
K. W.
,
2015
, “
On the Deformation Control During IHPF of Thin-Walled Aluminum Alloy Tube at Elevated Temperature
,”
J. Netshape Form. Eng.
,
7
(
1
), pp.
36
41
.
48.
Yuan
,
S. J.
,
Wang
,
X. S.
,
Liu
,
G.
, and
Wang
,
Z. R.
,
2007
, “
Control and Use of Wrinkles in Tube Hydroforming
,”
J. Mater. Process. Technol.
,
182
(
1–3
), pp.
6
11
.
49.
Zhu
,
H. H.
,
He
,
Z. B.
,
Lin
,
Y. L.
,
Zheng
,
K. L.
,
Fan
,
X. B.
, and
Yuan
,
S. J.
,
2020
, “
The Development of a Novel Forming Limit Diagram Under Nonlinear Loading Paths in Tube Hydroforming
,”
Int. J. Mech. Sci.
,
172
, p.
105392
.
50.
Khalfallah
,
A.
,
Oliveira
,
M. C.
,
Alves
,
J. L.
, and
Menezes
,
L. F.
,
2020
, “
Constitutive Parameter Identification of CB2001 Yield Function and its Experimental Verification Using Tube Hydroforming Tests
,”
Int. J. Mech. Sci.
,
185
, p.
105868
.
51.
Wu
,
K.
,
Li
,
X. X.
,
Ge
,
Y. L.
, and
Ruan
,
S. W.
,
2018
, “
Determination of Tubular Material Parameters in Bulging Test With Three-Dimensional Digital Image Correlation Method
,”
Int. J. Adv. Manuf. Technol.
,
96
(
5–8
), pp.
2091
2099
.
52.
Boudeau
,
N.
, and
Malécot
,
P.
,
2012
, “
A Simplified Analytical Model for Post-Processing Experimental Results From Tube Bulging Test: Theory, Experimentations, Simulations
,”
Int. J. Mech. Sci.
,
65
(
1
), pp.
1
11
.
53.
Saboori
,
M.
,
Champliaud
,
H.
,
Gholipour
,
J.
,
Gakwaya
,
A.
,
Savoie
,
J.
, and
Wanjara
,
P.
,
2014
, “
Evaluating the Flow Stress of Aerospace Alloys for Tube Hydroforming Process by Free Expansion Testing
,”
Int. J. Adv. Manuf. Technol.
,
72
(
9–12
), pp.
1275
1286
.
54.
PRC National Standard: GB/T 38719–2020
,
Metallic Materials – Tube – Determination of Biaxial Stress–Strain Curve of Tube by Hydro-Bulging Test
,
Standards Press of China
,
Beijing
.
55.
Korkolis
,
Y. P.
, and
Kyriakides
,
S.
,
2008
, “
Inflation and Burst of Anisotropic Aluminum Tubes for Hydroforming Applications
,”
Int. J. Plast.
,
24
(
3
), pp.
509
543
.
56.
Chen
,
X. F.
,
Yu
,
Z. Q.
,
Hou
,
B.
,
Li
,
S. H.
, and
Lin
,
Z. Q.
,
2011
, “
A Theoretical and Experimental Study on Forming Limit Diagram for a Seamed Tube Hydroforming
,”
J. Mater. Process. Technol.
,
211
(
12
), pp.
2012
2021
.
57.
Lin
,
Y. L.
,
2012
, “
Linear Thickness Model in Hydro-Bulging of Thin-Walled Tube and Test Method for Mechanical Properties
,”
PhD dissertation
,
HIT
,
China
.
58.
He
,
Z. B.
,
Zhang
,
K.
,
Lin
,
Y. L.
, and
Yuan
,
S. J.
,
2020
, “
An Accurate Determination Method for Constitutive Model of Anisotropic Tubular Materials with DIC-Based Controlled Biaxial Tensile Test
,”
Int. J. Mech. Sci.
,
181
, p.
105715
.
59.
Cui
,
X. L.
,
Wang
,
X. S.
, and
Yuan
,
S. J.
,
2017
, “
Formability Improvement of 5052 Aluminum Alloy Tube by the Outer Cladding Tube
,”
Int. J. Adv. Manuf. Technol.
,
90
(
5–8
), pp.
1617
1624
.
60.
Hwang
,
Y. M.
,
Lin
,
Y. K.
, and
Altan
,
T.
,
2007
, “
Evaluation of Tubular Materials by a Hydraulic Bulge Test
,”
Int. J. Mach. Tools Manuf.
,
47
(
2
), pp.
343
351
.
61.
Bai
,
Y.
, and
Wierzbicki
,
T.
,
2010
, “
Application of Extended Mohr-Coulomb Criterion to Ductile Fracture
,”
Int. J. Fract.
,
161
(
1
), pp.
1
20
.
62.
Yang
,
Z.
,
Zhao
,
C.
,
Dong
,
G.
, and
Chen
,
Z.
,
2021
, “
Experimental Calibration of Ductile Fracture Parameters and Forming Limit of AA7075-T6 Sheet
,”
J. Mater. Process. Technol.
,
291
, p.
117044
.
You do not currently have access to this content.