Abstract

Significant attention has been directed to the need for a strong and lightweight welding technology for joining the NiTi shape memory alloys (SMAs) to stainless steel (SS). Dissimilar NiTi/SS joints suffer from the brittle and inevitable intermetallic compounds (IMCs) like TiFe, TiFe2, and FeNi that are formed during the welding process. To tackle this challenge, this study explores the use of an engineered magnetic field during the dissimilar laser welding of NiTi to SS. The presence of a magnetic field delivered a remarkable improvement in the tensile strength (over 452 MPa) of the joint, with a notable difference in the microstructure. The effect of the magnetic field on microstructure was investigated; material characterizations showed brittle IMC-free microstructure and a change in grain growth mechanism from columnar to cellular growth during the solidification. Further, fractography analysis proved a ductile failure mode at the joint.

References

1.
Patel
,
S. K.
,
Behera
,
B.
,
Swain
,
B.
,
Roshan
,
R.
,
Sahoo
,
D.
, and
Behera
,
A.
,
2020
, “
A Review on NiTi Alloys for Biomedical Applications and Their Biocompatibility
,”
Mater. Today Proc.
,
33
, pp.
5548
5551
.
2.
Bhardwaj
,
A.
,
Gupta
,
A. K.
,
Padisala
,
S. K.
, and
Poluri
,
K.
,
2019
, “
Characterization of Mechanical and Microstructural Properties of Constrained Groove Pressed Nitinol Shape Memory Alloy for Biomedical Applications
,”
Mater. Sci. Eng. C
,
102
, pp.
730
742
.
3.
Safaei
,
K.
,
Abedi
,
H.
,
Nematollahi
,
M.
,
Kordizadeh
,
F.
,
Dabbaghi
,
H.
,
Bayati
,
P.
,
Javanbakht
,
R.
,
Jahadakbar
,
A.
,
Elahinia
,
M.
, and
Poorganji
,
B.
,
2021
, “
Additive Manufacturing of NiTi Shape Memory Alloy for Biomedical Applications: Review of the LPBF Process Ecosystem
,”
JOM
,
73
(
12
), pp.
3771
3786
.
4.
Jani
,
J. M.
,
Leary
,
M.
, and
Subic
,
A.
,
2014
, “
Shape Memory Alloys in Automotive Applications
,”
Appl. Mech. Mater.
,
663
, pp.
248
253
.
5.
Costanza
,
G.
, and
Tata
,
M. E.
,
2020
, “
Developments, and New Applications
,”
Materials
,
13
(
1856
), pp.
1
16
.
6.
Exarchos
,
D. A.
,
Dalla
,
P. T.
,
Tragazikis
,
I. K.
,
Dassios
,
K. G.
,
Zafeiropoulos
,
N. E.
,
Karabela
,
M. M.
,
De Crescenzo
,
C.
, et al
,
2018
, “
Development and Characterization of High Performance Shape Memory Alloy Coatings for Structural Aerospace Applications
,”
Materials
,
11
(
5
), p.
832
.
7.
Shamsolhodaei
,
A.
,
Oliveira
,
J. P.
,
Schell
,
N.
,
Maawad
,
E.
,
Panton
,
B.
, and
Zhou
,
Y. N.
,
2020
, “
Controlling Intermetallic Compounds Formation During Laser Welding of NiTi to 316L Stainless Steel
,”
Intermetallics (Barking)
,
116
, p.
106656
.
8.
Hellberg
,
S.
,
Hummel
,
J.
,
Krooß
,
P.
,
Niendorf
,
T.
, and
Böhm
,
S.
,
2020
, “
Microstructural and Mechanical Properties of Dissimilar Nitinol and Stainless Steel Wire Joints Produced by Micro Electron Beam Welding Without Filler Material
,”
Weld. World
,
64
(
12
), pp.
2159
2168
.
9.
Hartl
,
D. J.
, and
Lagoudas
,
D. C.
,
2007
, “
Aerospace Applications of Shape Memory Alloys
,”
Proc. Inst. Mech. Eng. G. J. Aerosp. Eng.
,
221
(
4
), pp.
535
552
.
10.
Kilkenny
,
N. S.
,
2017
, “
NASA Glenn Research Center Reinventing the Wheel
,” (nasa.gov).
11.
Oliveira
,
J. P.
,
Miranda
,
R. M.
, and
Braz Fernandes
,
F. M.
,
2017
, “
Welding and Joining of NiTi Shape Memory Alloys: A Review
,”
Prog. Mater. Sci.
,
88
, pp.
412
466
.
12.
Chen
,
Y.
,
Sun
,
S.
,
Zhang
,
T.
,
Zhou
,
X.
, and
Li
,
S.
,
2020
, “
Effects of Post-Weld Heat Treatment on the Microstructure and Mechanical Properties of Laser-Welded NiTi/304SS Joint With Ni Filler
,”
Mater. Sci. Eng. A
,
771
, p.
138545
.
13.
Pouquet
,
J.
,
Miranda
,
R. M.
,
Quintino
,
L.
, and
Williams
,
S.
,
2012
, “
Dissimilar Laser Welding of NiTi to Stainless Steel
,”
Int. J. Adv. Manuf. Technol.
,
61
(
1–4
), pp.
205
212
.
14.
Mirshekari
,
G. R.
,
Saatchi
,
A.
,
Kermanpur
,
A.
, and
Sadrnezhaad
,
S. K.
,
2013
, “
Laser Welding of NiTi Shape Memory Alloy: Comparison of the Similar and Dissimilar Joints to AISI 304 Stainless Steel
,”
Opt. Laser Technol.
,
54
, pp.
151
158
.
15.
Zhang
,
Y.
,
Zeng
,
H. Y.
,
Zhou
,
J. P.
,
Xue
,
R. L.
,
Sun
,
D. Q.
, and
Li
,
H. M.
,
2020
, “
Characterization of Laser Beam Offset Welding TiNi Alloy and 304 Stainless Steel With Different Joining Modes
,”
Opt. Laser Technol.
,
131
, p.
106372
.
16.
Farhang
,
B.
,
Tanrikulu
,
A. A.
,
Ganesh-Ram
,
A.
,
Jain
,
A.
, and
Amerinatanzi
,
A.
,
2023
, “
Electromagnetic Field-Assisted Laser Welding of NiTi to Stainless Steel: Towards a Lightweight, High-Strength Joint With Preserved Properties
,”
J. Mater. Process Technol.
,
314
, p.
117888
.
17.
Bachmann
,
M.
,
Avilov
,
V.
,
Gumenyuk
,
A.
, and
Rethmeier
,
M.
,
2014
, “
Experimental and Numerical Investigation of an Electromagnetic Weld Pool Control for Laser Beam Welding
,”
Phys. Procedia
,
56
(
C
), pp.
515
524
.
18.
Queiroz
,
A. V.
,
Fernandes
,
M. T.
,
Silva
,
L.
,
Demarque
,
R.
,
Xavier
,
C. R.
, and
Castro
,
J. A.
,
2020
, “
Effects of an External Magnetic Field on the Microstructural and Mechanical Properties of the Fusion Zone in TIG Welding
,”
Metals (Basel)
,
10
(
6
), p.
714
.
19.
Cao
,
L.
,
Yang
,
Y.
,
Jiang
,
P.
,
Zhou
,
Q.
,
Mi
,
G.
,
Gao
,
Z.
,
Rong
,
Y.
, and
Wang
,
C.
,
2017
, “
Optimization of Processing Parameters of AISI 316L Laser Welding Influenced by External Magnetic Field Combining RBFNN and GA
,”
Results Phys.
,
7
, pp.
1329
1338
.
20.
Huang
,
W.
,
Wang
,
H.
,
Rinker
,
T.
, and
Tan
,
W.
,
2020
, “
Investigation of Metal Mixing in Laser Keyhole Welding of Dissimilar Metals
,”
Mater. Des.
,
195
, p.
109056
.
21.
Chang
,
B.
,
Yuan
,
Z.
,
Pu
,
H.
,
Li
,
H.
,
Cheng
,
H.
,
Du
,
D.
, and
Shan
,
J.
,
2017
, “
Study of Gravity Effects on Titanium Laser Welding in the Vertical Position
,”
Materials
,
10
(
9
), p.
1031
.
22.
Deepan Bharathi Kannan
,
T.
,
Ramesh
,
T.
, and
Sathiya
,
P.
,
2016
, “
A Review of Similar and Dissimilar Micro-Joining of Nitinol
,”
JOM
,
68
(
4
), pp.
1227
1245
.
23.
Chatterjee
,
S.
,
Abinandanan
,
T. A.
, and
Chattopadhyay
,
K.
,
2008
, “
Phase Formation in Ti/Ni Dissimilar Welds
,”
Mater. Sci. Eng. A
,
490
(
1–2
), pp.
7
15
.
24.
Niu
,
H.
,
Jiang
,
H. C.
,
Zhao
,
M. J.
, and
Rong
,
L. J.
,
2021
, “
Effect of Interlayer Addition on Microstructure and Mechanical Properties of NiTi/Stainless Steel Joint by Electron Beam Welding
,”
J. Mater. Sci. Technol.
,
61
, pp.
16
24
.
25.
Cacciamani
,
G.
,
De Keyzer
,
J.
,
Ferro
,
R.
,
Klotz
,
U. E.
,
Lacaze
,
J.
, and
Wollants
,
P.
,
2006
, “
Critical Evaluation of the Fe-Ni, Fe-Ti and Fe-Ni-Ti Alloy Systems
,”
Intermetallics (Barking)
,
14
(
10–11
), pp.
1312
1325
.
26.
Zeng
,
Z.
,
Panton
,
B.
,
Oliveira
,
J. P.
,
Han
,
A.
, and
Zhou
,
Y. N.
,
2015
, “
Dissimilar Laser Welding of NiTi Shape Memory Alloy and Copper
,”
Smart Mater. Struct.
,
24
(
12
), p.
125036
.
27.
Asadi
,
S.
,
Saeid
,
T.
,
Valanezhad
,
A.
,
Watanabe
,
I.
, and
Khalil-Allafi
,
J.
,
2020
, “
Effects of Ni Powder Addition on Microstructure and Mechanical Properties of NiTi to AISI 304 Stainless Steel Archwire Dissimilar Laser Welds
,”
J. Manuf. Process
,
55
, pp.
13
21
.
28.
Kirkwood
,
D. H.
,
1985
, “
A Simple Model for Dendrite Arm Coarsening During Solidification
,”
Mater. Sci. Eng.
,
73
(
C
), p.
L1
.
29.
Zheng
,
S.
, and
Mao
,
S. X.
,
2021
, “
Advances in Experimental Mechanics at Atomic Scale
,”
Extreme Mech. Lett.
,
45
, p.
101284
.
30.
Wang
,
X.
,
Zheng
,
S.
,
Shinzato
,
S.
,
Fang
,
Z.
,
He
,
Y.
,
Zhong
,
L.
,
Wang
,
C.
,
Ogata
,
S.
, and
Mao
,
S. X.
,
2021
, “
Atomistic Processes of Surface-Diffusion-Induced Abnormal Softening in Nanoscale Metallic Crystals
,”
Nat. Commun.
,
12
(
1
), p.
5237
.
31.
Chatterjee
,
S.
,
Abinandanan
,
T. A.
, and
Chattopadhyay
,
K.
,
2006
, “
Microstructure Development During Dissimilar Welding: Case of Laser Welding of Ti With Ni Involving Intermetallic Phase Formation
,”
J. Mater. Sci.
,
41
(
3
), pp.
643
652
.
32.
Hall
,
M. C.
, and
Walker
,
J. S.
,
1993
, “
Heat and Mass Transfer Through a Liquid Metal in an Infinitely Long, Rotating Cylinder With a Uniform, Transverse Magnetic Field
,”
Int. J. Heat Mass Transf.
,
36
(
14
), pp.
3509
3514
.
33.
Stefanescu
,
D. M.
, and
Ruxanda
,
R.
,
2018
, “Fundamentals of Solidification,”
Metallography and Microstructures
, 9th ed.,
ASM International
, pp.
71
92
.
34.
Li
,
H.
,
Sun
,
D.
,
Gu
,
X.
,
Dong
,
P.
, and
Lv
,
Z.
,
2013
, “
Effects of the Thickness of Cu Filler Metal on the Microstructure and Properties of Laser-Welded TiNi Alloy and Stainless Steel Joint
,”
Mater. Des.
,
50
, pp.
342
350
.
35.
Yang
,
C.
, and
Williams
,
D. B.
,
1996
, “
A Revision of the Fe-Ni Phase Diagram at Low Temperatures (<400 OC)
,”
J. Phase Equilibria
17
(
6
), pp.
522
531
.
36.
Mishin
,
Y.
,
Mehl
,
M. J.
, and
Papaconstantopoulos
,
D. A.
,
2005
, “
Phase Stability in the Fe-Ni System: Investigation by First-Principles Calculations and Atomistic Simulations
,”
Acta Mater.
,
53
(
15
), pp.
4029
4041
.
37.
Li
,
H.
,
Sun
,
D.
,
Cai
,
X.
,
Dong
,
P.
, and
Gu
,
X.
,
2013
, “
Laser Welding of TiNi Shape Memory Alloy and Stainless Steel Using Co Filler Metal
,”
Opt. Laser Technol.
,
45
(
1
), pp.
453
460
.
38.
Li
,
H. M.
,
Sun
,
D. Q.
,
Cai
,
X. L.
,
Dong
,
P.
, and
Wang
,
W. Q.
,
2012
, “
Laser Welding of TiNi Shape Memory Alloy and Stainless Steel Using Ni Interlayer
,”
Mater. Des.
,
39
, pp.
285
293
.
39.
Ng
,
C. H.
,
Mok
,
E. S. H.
, and
Man
,
H. C.
,
2015
, “
Effect of Ta Interlayer on Laser Welding of NiTi to AISI 316L Stainless Steel
,”
J. Mater. Process Technol.
,
226
, pp.
69
77
.
40.
Song
,
Y. G.
,
Li
,
W. S.
,
Li
,
L.
, and
Zheng
,
Y. F.
,
2008
, “
The Influence of Laser Welding Parameters on the Microstructure and Mechanical Property of the As-Jointed NiTi Alloy Wires
,”
Mater. Lett.
,
62
(
15
), pp.
2325
2328
.
41.
Tuissi
,
A.
,
Bassani
,
P.
,
Gerosa
,
M.
,
Mauri
,
D.
,
Pini
,
M.
,
Capello
,
E.
,
Previtali
,
B.
, and
Vedani
,
M.
,
2004
, “
CO2 Laser Welding of NiTi/Ni-Based Alloys
,”
Proceedings of International Conference on Shape Memory and Superelastic Technologies
Baden-Baden, Germany
, pp.
229
238
.
You do not currently have access to this content.