Abstract

The cell is a microcapsule system wherein biological materials are encapsulated by a thin membrane, which provides valuable information on the metabolism, morphology, development, and signal transduction pathways of the studied cell. The cell-inspired microdroplet has the characteristics of efficient nanoscale substance transportation, self-organization, and morphological adaptation. However, it is extremely difficult to manufacture such systems. Mostly vesicles such as liposomes, polymersomes, and microcapsules are first produced by a high-pressure homogenizer and microfluidizer as an emulsion and then encapsulated microcapsules by the drop or emulsion method. Currently, acoustic levitation opens entirely new possibilities for creating bioinspired microdroplets because of its ability to suspend tiny droplets in an antigravity and noncontact manner. Herein, we propose contactless printing of single-core or multi-core cell-inspired microdroplets via acoustic levitation. First, the oscillation mode and microscopic morphology of the droplets under different ultrasonic vibration frequencies are shown by simulation, and the curing characteristics of the shell structure under different ultraviolet illumination conditions are quantitatively measured. The feasibility of manufacturing multi-core microdroplets and manufacturing submillimeter-scale particles based on oil trapping is extensively studied. To explore the morphological adaptability of microdroplets, ferromagnetic Fe3O4 nanoparticles are used to give magnetic-responsive properties to cells, and the microscopic deformation and motion in microfluidic channels under the magnetic field are characterized. Finally, the proposed printing method proves the versatility of in-space contactless printing of complex 3D beam structures and provides a powerful platform for developing biomedical devices and microrobots and studying morphogenesis and synthetic biological systems.

References

1.
Zou
,
D.
,
Wang
,
H.
,
Liu
,
X.
,
Xu
,
Z. P.
,
Roberts
,
M. S.
, and
Zhao
,
C. X.
,
2021
, “
Artificial Cells for the Treatment of Liver Diseases
,”
Acta Biomaterialia.
,
130
, pp.
98
114
.
2.
Marzo
,
A.
,
Barnes
,
A.
, and
Drinkwater
,
B. W.
,
2017
, “
TinyLev: A Multi-Emitter Single-Axis Acoustic Levitator
,”
Rev. Sci. Instrum.
,
88
(
8
), p.
085105
.
3.
Watanabe
,
A.
,
Hasegawa
,
K.
, and
Abe
,
Y.
,
2018
, “
Contactless Fluid Manipulation in Air: Droplet Coalescence and Active Mixing by Acoustic Levitation
,”
Sci. Rep.
,
8
(
1
), p.
10221
.
4.
Polychronopoulos
,
S.
, and
Memoli
,
G.
,
2020
, “
Acoustic Levitation With Optimized Reflective Metamaterials
,”
Sci. Rep.
,
10
(
1
), p.
4254
.
5.
Hirayama
,
R.
,
Christopoulos
,
G.
,
Martinez Plasencia
,
D.
, and
Subramanian
,
S.
, “
High-Speed Acoustic Holography With Arbitrary Scattering Objects
,”
Sci. Adv.
,
8
(
24
), p.
eabn7614
.
6.
Marzo
,
A.
,
Seah
,
S. A.
,
Drinkwater
,
B. W.
,
Sahoo
,
D. R.
,
Long
,
B.
, and
Subramanian
,
S.
,
2015
, “
Holographic Acoustic Elements for Manipulation of Levitated Objects
,”
Nat. Commun.
,
6
(
1
), p.
8661
.
7.
Ochiai
,
Y.
,
Hoshi
,
T.
, and
Rekimoto
,
J.
,
2014
, “
Three-Dimensional Mid-Air Acoustic Manipulation by Ultrasonic Phased Arrays
,”
PLoS One
,
9
(
5
), p.
e97590
.
8.
Morales
,
R.
,
Ezcurdia
,
I.
,
Irisarri
,
J.
,
Andrade
,
M. A. B.
, and
Marzo
,
A.
,
2021
, “
Generating Airborne Ultrasonic Amplitude Patterns Using an Open Hardware Phased Array
,”
Appl. Sci.
,
11
(
7
), p.
2981
.
9.
Foresti
,
D.
,
Nabavi
,
M.
,
Klingauf
,
M.
,
Ferrari
,
A.
, and
Poulikakos
,
D.
,
2013
, “
Acoustophoretic Contactless Transport and Handling of Matter in Air
,”
Proc. Natl. Acad. Sci. USA
,
110
(
31
), pp.
12549
12554
.
10.
Chen
,
K.
,
Wu
,
M.
,
Guo
,
F.
,
Li
,
P.
,
Chan
,
C. Y.
,
Mao
,
Z.
,
Li
,
S.
,
Ren
,
L.
,
Zhang
,
R.
, and
Huang
,
T. J.
,
2016
, “
Rapid Formation of Size-Controllable Multicellular Spheroids Via 3D Acoustic Tweezers
,”
Lab Chip
,
16
(
14
), pp.
2636
2643
.
11.
Tanwar
,
L.
, and
Devaraj
,
N. K.
,
2022
, “
Engineering Materials for Artificial Cells
,”
Curr. Opin. Solid State Mater. Sci.
,
26
(
4
), p.
101004
.
12.
Chen
,
L.
,
Xiao
,
Y.
,
Wu
,
Q.
,
Yan
,
X.
,
Zhao
,
P.
,
Ruan
,
J.
,
Shan
,
J.
,
Chen
,
D.
,
Weitz
,
D. A.
, and
Ye
,
F.
,
2021
, “
Emulsion Designer Using Microfluidic Three-Dimensional Droplet Printing in Droplet
,”
Small
,
17
(
39
), p.
2102579
.
13.
Tiwari
,
L.
,
Tang
,
T.
,
Rong
,
J.
,
Shan
,
W.
,
Yang
,
Y.
, and
Li
,
X.
,
2022
, “
Thermoelectric Material Fabrication Using Mask Image Projection Based Stereolithography Integrated With Hot Pressing
,”
J. Mater. Sci. Technol. Res.
,
9
(
1
), pp.
105
113
.
14.
Tengteng
,
T.
,
Dylan
,
J.
, and
Xiangjia
,
L.
,
2023
, “3D Printing of Biomimetic Functional Nanocomposites Via Vat Photopolymerization,”
Advances in 3D Printing
,
S.
Ashutosh
, ed.,
IntechOpen
,
Rijeka
, p.
5
.
15.
Tang
,
T.
,
Alfarhan
,
S.
,
Jin
,
K.
, and
Li
,
X.
,
2023
, “
4D Printing of Seed Capsule-Inspired Hygro-Responsive Structures Via Liquid Crystal Templating-Assisted Vat Photopolymerization
,”
Adv. Funct. Mater.
,
33
(
5
), p.
2370029
.
16.
Li
,
J.
,
Jamieson
,
W. D.
,
Dimitriou
,
P.
,
Xu
,
W.
,
Rohde
,
P.
,
Martinac
,
B.
,
Baker
,
M.
,
Drinkwater
,
B. W.
,
Castell
,
O. K.
, and
Barrow
,
D. A.
,
2022
, “
Building Programmable Multicompartment Artificial Cells Incorporating Remotely Activated Protein Channels Using Microfluidics and Acoustic Levitation
,”
Nat. Commun.
,
13
(
1
), p.
4125
.
17.
Zang
,
D.
,
Yu
,
Y.
,
Chen
,
Z.
,
Li
,
X.
,
Wu
,
H.
, and
Geng
,
X.
,
2017
, “
Acoustic Levitation of Liquid Drops: Dynamics, Manipulation and Phase Transitions
,”
Adv. Colloid Interface Sci.
,
243
, pp.
77
85
.
18.
Tang
,
T.
,
Ahire
,
B.
, and
Li
,
X.
,
2023
, “
Scalable Multi-Material Additive Manufacturing of Bioinspired Polymeric Material With Metallic Structures Via Electrically Assisted Stereolithography
,”
ASME J. Manuf. Sci. Eng.
,
145
(
1
), p.
011004
.
19.
Joralmon
,
D.
,
Alfarhan
,
S.
,
Kim
,
S.
,
Tang
,
T.
,
Jin
,
K.
, and
Li
,
X.
,
2022
, “
Three-Dimensional Printing of Liquid Crystals With Thermal Sensing Capability Via Multimaterial Vat Photopolymerization
,”
ACS Appl. Polymer Mater.
,
4
(
4
), pp.
2951
2959
.
20.
Tang
,
T.
,
Alfarhan
,
S.
,
Jin
,
K.
, and
Li
,
X.
,
2023
, “
4D Printing of Seed Capsule-Inspired Hygro-Responsive Structures Via Liquid Crystal Templating-Assisted Vat Photopolymerization
,”
Adv. Funct. Mater.
,
33
(
5
), p.
2211602
.
21.
Sakamoto
,
R.
,
Izri
,
Z.
,
Shimamoto
,
Y.
,
Miyazaki
,
M.
, and
Maeda
,
Y. T.
,
2022
, “
Geometric Trade-Off Between Contractile Force and Viscous Drag Determines the Actomyosin-Based Motility of a Cell-Sized Droplet
,”
Proc. Natl. Acad. Sci. USA
,
119
(
30
), p.
e2121147119
.
22.
Tang
,
T.
,
Dwarampudi
,
G. S. K. A. R.
, and
Li
,
X.
,
2023
, “
Electrically Assisted Vat Photopolymerization of Bioinspired Hierarchical Structures With Controllable Roughness for Hydrophobicity Enhancement Using Photocurable Resin/Carbon Nanotube
,”
JOM
,
75
(
7
), pp.
2137
2148
.
23.
Gor'kov
,
L. P.
,
1962
, “
On the Forces Acting on a Small Particle in an Acoustical Field in an Ideal Fluid
,”
Soviet Phys. Doklady
,
6
, p.
773
.
24.
Shen
,
C. L.
,
Xie
,
W. J.
, and
Wei
,
B.
,
2010
, “
Parametrically Excited Sectorial Oscillation of Liquid Drops Floating in Ultrasound
,”
Phys. Rev. E
,
81
(
4
), p.
046305
.
25.
Jacobs
,
P. F.
,
1992
, “
Rapid Prototyping & Manufacturing: Fundamentals of Stereolithography
,”
Soc. Manuf. Eng.
,
12
(
5
), pp.
430
433
.
26.
Joyee
,
E. B.
,
Lu
,
L.
, and
Pan
,
Y.
,
2019
, “
Analysis of Mechanical Behavior of 3D Printed Heterogeneous Particle-Polymer Composites
,”
Compos. B. Eng.
,
173
, p.
106840
.
27.
Yasui
,
M.
, and
Ikuta
,
K.
,
2017
, “
Modeling and Measurement of Curing Properties of Photocurable Polymer Containing Magnetic Particles and Microcapsules
,”
Microsyst. Nanoeng.
,
3
(
1
), p.
17035
.
28.
Zhu
,
Y.
,
Tang
,
T.
,
Zhao
,
S.
,
Joralmon
,
D.
,
Poit
,
Z.
,
Ahire
,
B.
,
Keshav
,
S.
,
Raje
AR
,
Blair
J
,
Zhang
Z
,
Li
X
,
2022
, “
Recent Advancements and Applications in 3D Printing of Functional Optics
,”
Addit. Manuf.
,
52
, p.
102682
.
You do not currently have access to this content.