Abstract

Physics-informed deep learning (PIDL) is one of the emerging topics in additive manufacturing (AM). However, the success of previous PIDL approaches is generally significantly dependent on the existence of massive datasets. As the data collection in AM is usually challenging, a novel Architecture-driven PIDL structure named APIDL based on the deep unfolding approach for limited data scenarios has been proposed in the current study for predicting thermal history in the laser powder bed fusion process. The connections in this machine learning architecture are inspired by iterative thermal model equations. In other words, each iteration of the thermal model is mapped to a layer of the neural network. The hyper-parameters of the APIDL model are tuned, and its performance is analyzed. The APIDL for 1000 points with 80:20 split ratio achieves testing mean absolute percentage error (MAPE) of 2.8% and R2 value of 0.936. The APIDL is compared with the artificial neural network, extra trees regressor (ETR), support vector regressor, and long short-term memory algorithms. It was shown that the proposed APIDL model outperforms the others. The MAPE and R2 of APIDL are 55.7% lower and 15.6% higher than the ETR, which had the best performance among other pure machine learning models.

References

1.
Bandyopadhyay
,
A.
,
Zhang
,
Y.
, and
Bose
,
S.
,
2020
, “
Recent Developments in Metal Additive Manufacturing
,”
Curr. Opin. Chem. Eng.
,
28
, pp.
96
104
.
2.
Karniadakis
,
G. E.
,
Kevrekidis
,
I. G.
,
Lu
,
L.
,
Perdikaris
,
P.
,
Wang
,
S.
, and
Yang
,
L.
,
2021
, “
Physics-Informed Machine Learning
,”
Nat. Rev. Phys.
,
3
(
6
), pp.
422
440
.
3.
Shipley
,
H.
,
McDonnell
,
D.
,
Culleton
,
M.
,
Coull
,
R.
,
Lupoi
,
R.
,
O’Donnell
,
G.
, et al
,
2018
, “
Optimisation of Process Parameters to Address Fundamental Challenges During Selective Laser Melting of Ti-6Al-4V: A Review
,”
Int. J. Mach. Tools Manuf.
,
128
, pp.
1
20
.
4.
Liu
,
S.
, and
Shin
,
Y. C.
,
2019
, “
Additive Manufacturing of Ti6Al4V Alloy: A Review
,”
Mater. Des.
,
164
, p.
107552
.
5.
Oliveira
,
J. P.
,
LaLonde
,
A. D.
, and
Ma
,
J.
,
2020
, “
Processing Parameters in Laser Powder bed Fusion Metal Additive Manufacturing
,”
Mater. Des.
,
193
, pp.
1
12
.
6.
Zaeh
,
M. F.
, and
Branner
,
G.
,
2010
, “
Investigations on Residual Stresses and Deformations in Selective Laser Melting
,”
Prod. Eng.
,
4
(
1
), pp.
35
45
.
7.
Ning
,
J.
,
Praniewicz
,
M.
,
Wang
,
W.
,
Dobbs
,
J. R.
, and
Liang
,
S. Y.
,
2020
, “
Analytical Modeling of Part Distortion in Metal Additive Manufacturing
,”
Int. J. Adv. Manuf. Technol.
,
107
(
1–2
), pp.
49
57
.
8.
Zhu
,
Q.
,
Liu
,
Z.
, and
Yan
,
J.
,
2021
, “
Machine Learning for Metal Additive Manufacturing: Predicting Temperature and Melt Pool Fluid Dynamics Using Physics-Informed Neural Networks
,”
Comput. Mech.
,
67
(
2
), pp.
619
635
.
9.
Perret
,
W.
,
Schwenk
,
C.
, and
Rethmeier
,
M.
,
2010
, “
Comparison of Analytical and Numerical Welding Temperature Field Calculation
,”
Comput. Mater. Sci.
,
47
(
4
), pp.
1005
1015
.
10.
Yan
,
Z.
,
Liu
,
W.
,
Tang
,
Z.
,
Liu
,
X.
,
Zhang
,
N.
,
Li
,
M.
, et al
,
2018
, “
Review on Thermal Analysis in Laser-Based Additive Manufacturing
,”
Opt. Laser Technol.
,
106
, pp.
427
441
.
11.
Ning
,
J.
,
Sievers
,
D. E.
,
Garmestani
,
H.
, and
Liang
,
S. Y.
,
2020
, “
Analytical Modeling of In-Process Temperature in Powder Feed Metal Additive Manufacturing Considering Heat Transfer Boundary Condition
,”
Int. J. Precis. Eng. Manuf.-Green Technol.
,
7
(
3
), pp.
585
593
.
12.
Bin
,
W. Y.
,
Zheng
,
P.
,
Peng
,
T.
,
Yang
,
H. Y.
, and
Zou
,
J.
,
2020
, “
Smart Additive Manufacturing: Current Artificial Intelligence-Enabled Methods and Future Perspectives
,”
Sci. China Technol. Sci.
,
63
(
9
), pp.
1600
1611
.
13.
Zhang
,
Z.
,
Liu
,
Z.
, and
Wu
,
D.
,
2021
, “
Prediction of Melt Pool Temperature in Directed Energy Deposition Using Machine Learning
,”
Addit. Manuf.
,
37
, p.
101692
.
14.
Paul
,
A.
,
Mozaffar
,
M.
,
Yang
,
Z.
,
Liao
,
W.
,
Choudhary
,
A.
,
Cao
,
J.
, et al
,
2019
, “
A Real-Time Iterative Machine Learning Approach for Temperature Profile Prediction in Additive Manufacturing Processes
,”
Proceedings of the 2019 IEEE International Conference on Data Science and Advanced Analytics
,
Washington, DC
,
Oct. 5–8
, IEEE, pp.
541
550
.
15.
Shijie
,
J.
,
Ping
,
W.
,
Peiyi
,
J.
, and
Siping
,
H.
,
2017
, “
Research on Data Augmentation for Image Classification Based on Convolution Neural Networks
,”
Proceedings of the 2017 Chinese Automation Congress
,
Jinan, China
,
Oct. 20–22
, pp.
4165
4170
.
16.
Kapusuzoglu
,
B.
, and
Mahadevan
,
S.
,
2020
, “
Physics-Informed and Hybrid Machine Learning in Additive Manufacturing: Application to Fused Filament Fabrication
,”
JOM
,
72
(
12
), pp.
4695
4705
.
17.
Wang
,
Z.
,
Yang
,
W.
,
Liu
,
Q.
,
Zhao
,
Y.
,
Liu
,
P.
,
Wu
,
D.
, et al
,
2022
, “
Data-Driven Modeling of Process, Structure and Property in Additive Manufacturing: A Review and Future Directions
,”
J. Manuf. Process.
,
77
, pp.
13
31
.
18.
Du
,
Y.
,
Mukherjee
,
T.
, and
DebRoy
,
T.
,
2021
, “
Physics-Informed Machine Learning and Mechanistic Modeling of Additive Manufacturing to Reduce Defects
,”
Appl. Mater. Today
,
24
, p.
101123
.
19.
Guo
,
S.
,
Agarwal
,
M.
,
Cooper
,
C.
,
Tian
,
Q.
,
Gao
,
R. X.
,
Guo
,
W.
, et al
,
2022
, “
Machine Learning for Metal Additive Manufacturing: Towards a Physics-Informed Data-Driven Paradigm
,”
J. Manuf. Syst.
,
62
, pp.
145
163
.
20.
Mozaffar
,
M.
,
Liao
,
S.
,
Xie
,
X.
,
Saha
,
S.
,
Park
,
C.
,
Cao
,
J.
, et al
,
2022
, “
Mechanistic Artificial Intelligence (Mechanistic-AI) for Modeling, Design, and Control of Advanced Manufacturing Processes: Current State and Perspectives
,”
J. Mater. Process. Technol.
,
302
, p.
117485
.
21.
Xie
,
J.
,
Chai
,
Z.
,
Xu
,
L.
,
Ren
,
X.
,
Liu
,
S.
, and
Chen
,
X.
,
2022
, “
3D Temperature Field Prediction in Direct Energy Deposition of Metals Using Physics Informed Neural Network
,”
Int. J. Adv. Manuf. Technol.
,
119
(
5
), pp.
3449
3468
.
22.
Goh
,
G. D.
,
Sing
,
S. L.
, and
Yeong
,
W. Y.
,
2021
, “
A Review on Machine Learning in 3D Printing: Applications, Potential, and Challenges
,”
Artif. Intell. Rev.
,
54
(
1
), pp.
63
94
.
23.
Meng
,
L.
,
McWilliams
,
B.
,
Jarosinski
,
W.
,
Park
,
H.-Y.
,
Jung
,
Y.-G.
,
Lee
,
J.
, et al
,
2020
, “
Machine Learning in Additive Manufacturing: A Review
,”
JOM
,
72
(
6
), pp.
2363
2377
.
24.
Ghungrad
,
S.
,
Gould
,
B.
,
Soltanalian
,
M.
,
Wolff
,
S. J.
, and
Haghighi
,
A.
,
2021
, “
Model-Based Deep Learning for Additive Manufacturing: New Frontiers and Applications
,”
Manuf. Lett.
,
29
, pp.
94
98
.
25.
Khobahi
,
S.
,
Naimipour
,
N.
,
Soltanalian
,
M.
, and
Eldar
,
Y. C.
,
2019-May
, “
Deep Signal Recovery With One-Bit Quantization
,”
ICASSP, IEEE International Conference on Acoustic Speech Signal Process—Proceedings 2019
,
Brighton, UK
,
May 12–17
, pp.
2987
2991
.
26.
Monga
,
V.
,
Li
,
Y.
, and
Eldar
,
Y. C.
,
2021
, “
Algorithm Unrolling: Interpretable, Efficient Deep Learning for Signal and Image Processing
,”
IEEE Signal Process. Mag.
,
38
(
2
), pp.
18
44
.
27.
Hershey
,
J. R.
,
Le
,
R. J.
, and
Weninger
,
F.
,
2014
, “
Deep Unfolding: Model-Based Inspiration of Novel Deep Architectures
,”
arXiv preprint
.
28.
Mogilipalepu
,
K. K.
,
Modukuri
,
S. K.
,
Madapu
,
A.
, and
Chepuri
,
S. P.
,
2021
, “
Federated Deep Unfolding for Sparse Recovery
,”
29th European Signal Processing Conference (EUSIPCO)
,
Dublin, Ireland
.
29.
Ghungrad
,
S.
,
Gould
,
B.
,
Wolff
,
S.
, and
Haghighi
,
A.
,
2022
, “
Physics-Informed Artificial Intelligence for Temperature Prediction in Metal Additive Manufacturing: A Comparative Study
,”
International Manufacturing Science and Engineering Conference
,
West Lafayette, IN
,
June 27–July 1
.
30.
Luo
,
Z.
, and
Zhao
,
Y.
,
2020
, “
Efficient Thermal Finite Element Modeling of Selective Laser Melting of Inconel 718
,”
Comput. Mech.
,
65
(
3
), pp.
763
787
.
31.
Wolff
,
S. J.
,
Lin
,
S.
,
Faierson
,
E. J.
,
Liu
,
W. K.
,
Wagner
,
G. J.
, and
Cao
,
J.
,
2017
, “
A Framework to Link Localized Cooling and Properties of Directed Energy Deposition (DED)-Processed Ti-6Al-4 V
,”
Acta Mater.
,
132
, pp.
106
117
.
32.
Stathatos
,
E.
, and
Vosniakos
,
G.-C.
,
2019
, “
Real-Time Simulation for Long Paths in Laser-Based Additive Manufacturing: A Machine Learning Approach
,”
Int. J. Adv. Manuf. Technol.
,
104
(
5–8
), pp.
1967
1984
.
33.
Liu
,
Z.
,
Xu
,
Y.
,
Qiu
,
C.
, and
Tan
,
J.
,
2019
, “
A Novel Support Vector Regression Algorithm Incorporated With Prior Knowledge and Error Compensation for Small Datasets
,”
Neural Comput. Appl.
,
31
(
9
), pp.
4849
4864
.
34.
Gould
,
B.
,
Wolff
,
S.
,
Parab
,
N.
,
Zhao
,
C.
,
Lorenzo-Martin
,
M. C.
,
Fezzaa
,
K.
, et al
,
2021
, “
In Situ Analysis of Laser Powder Bed Fusion Using Simultaneous High-Speed Infrared and X-Ray Imaging
,”
JOM
(
1
),
73
, pp.
201
211
.
35.
Défossez
,
A.
,
Bottou
,
L.
,
Bach
,
F.
, and
Usunier
,
N.
,
2020
, “
A Simple Convergence Proof of Adam and Adagrad
,”
arXiv preprint
. https://arxiv.org/abs/2003.02395
36.
Tod
,
G.
,
Ompusunggu
,
A. P.
,
Struyf
,
G.
,
Pipeleers
,
G.
,
Grave
,
K. D.
, and
Hostens
,
E.
,
2021
, “
Physics-Informed Neural Networks (PINNs) for Improving a Thermal Model in Stereolithography Applications
,”
Proc. CIRP
,
104
, pp.
1559
1564
.
37.
Knüttel
,
D.
,
Baraldo
,
S.
,
Valente
,
A.
,
Wegener
,
K.
, and
Carpanzano
,
E.
,
2021
, “
Model Based Learning for Efficient Modelling of Heat Transfer Dynamics
,”
Proc. CIRP
,
102
, pp.
252
257
.
You do not currently have access to this content.