## Abstract

Gear drive is a common and efficient way to transfer power and motion. To ensure the machining accuracy of gears, the tooth flanks are formed by profile grinding technology in some cases. In the profile grinding process, the calculation of wheels using the information of gears named as the forward-calculation process and obtaining gears based on wheels (the backward-calculation process) traditionally adopt numerical ways. It is always time consuming and large code quantity. To conquer these drawbacks, this article presents an analytical method using the envelope theory to compute the contacting curves that are the basis of getting tooth flanks or wheels in the forward- or the backward-calculation process. For the forward-calculation process, the tooth flank is expressed in the form of an extended straight-line surface that can be taken as the generating line moving along the helix curve. The normal vector for an arbitrary point on the generating line is the same. By using this characteristic, the contacting curve can be explicitly gained as the function of only one parameter. Similarly, in the backward-calculation process, the formed wheel is expressed by a cross section rotating about its axis. For this type of surface, the guide curve is a circle, and the normal vectors of points on the guideline insect with the axis at the same point. Taking advantage of this principle, the contacting curve can be analytically expressed by only one unknown parameter. To verify the validity of the proposed method, some examples and comparative experiments are performed. The results show that the presented method is correct. When compared with the classical numerical way, the time span for the proposed method is 15 times less than that for the numerical way. When compared with the practical grinding wheel and the practical gear, the maximum errors are 0.18 mm and 0.0099 mm, respectively. The proposed method can be served as one of the universal ways to generate formed wheels or involute gears in the profile grinding process.

## References

1.
,
R. D.
, and
Singh
,
A. K.
,
2019
, “
A Novel Magnetorheological Gear Profile Finishing With High Shape Accuracy
,”
Int. J. Mach. Tools Manuf.
,
139
, pp.
75
92
.
2.
,
S. P.
,
2005
, “
Computation of Parameters of a Form Grinding Wheel for Grinding of Shaving Cutter for Plunge Shaving of Topologically Modified Involute Pinion
,”
ASME J. Manuf. Sci. Eng.
,
127
(
4
), pp.
819
828
.
3.
Zhou
,
W. H.
,
Tang
,
J. Y.
, and
Shao
,
W.
,
2020
, “
Study on Surface Generation Mechanism and Roughness Distribution in Gear Profile Grinding
,”
Int. J. Mech. Sci.
,
187
(
1
), p.
105921
.
4.
Lars
,
V.
,
Carin
,
A.
, and
Jan-Eric
,
S.
,
2009
, “
A Parametric Analysis of the Undeformed Chip Geometry in Gear Hobbing
,”
ASME J. Manuf. Sci. Eng.
,
131
(
6
), p.
061003
.
5.
Liu
,
H.
,
Zhu
,
C.
,
Zhang
,
Y.
,
Wang
,
Z.
, and
Song
,
C.
,
2016
, “
Tribological Evaluation of a Coated Spur Gear Pair
,”
Tribol. Int.
,
99
, pp.
117
126
.
6.
Michal
,
B.
,
2020
, “
A Novel Method of Obtaining Honing Tool Profile for Machining Gears With Profile Modifications
,”
ASME J. Manuf. Sci. Eng.
,
142
(
9
), p.
091004
.
7.
Janßen
,
C.
,
Brimmers
,
J.
, and
Bergs
,
T.
,
2021
, “
Development of a Method for Applying Free Kinematics for Gear Profile Grinding
,”
Procedia CIRP
,
104
, pp.
1373
1377
.
8.
Mu
,
Y. M.
,
He
,
X. M.
, and
Fang
,
Z. D.
,
2021
, “
An Innovative Ease-Off Flank Modification Method Based on the Dynamic Performance for High-Speed Spiral Bevel Gear With High-Contact-Ratio
,”
Mech. Mach. Theory
,
162
, p.
10345
.
9.
Yang
,
S. Y.
, and
Chen
,
W. F.
,
2021
, “
Modeling and Experiment of Grinding Wheel Axial Profiles Based on Gear Hobs
,”
Chin. J. Aeronaut.
,
34
(
6
), pp.
141
150
.
10.
He
,
Z. Y.
,
Zhang
,
T.
, and
Lin
,
T. J.
,
2020
, “
Novel Mathematical Modelling Method for Meshing Impact of Helical Gear
,”
Mech. Mach. Theory
,
152
(
103949
).
11.
Litvin
,
F. L.
, and
Fuentus
,
A.
,
2004
,
Gear Geometry and Applied Theory
, 2nd ed., Cambridge University Press, Cambridge.
12.
Huangfu
,
Y. F.
,
Zhao
,
Z. F.
,
Ma
,
H.
,
Han
,
H. Z.
, and
Chen
,
K. K.
,
2020
, “
Effects of Tooth Modifications on the Dynamic Characteristics of Thin-Rimmed Gears Under Surface Wear
,”
Mech. Mach. Theory
,
150
, p.
103870
.
13.
Zhu
,
L. Y.
,
Shi
,
J. F.
, and
Gou
,
X. F.
,
2020
, “
Modeling and Dynamics Analyzing of a Torsional-Bending-Pendular Face-Gear Drive System Considering Multi-State Engagements
,”
Mech. Mach. Theory
,
149
, p.
103790
.
14.
Guerrini
,
G.
,
Lutey
,
A. H. A.
,
Melkote
,
S. N.
,
Ascari
,
A.
, and
Fortunato
,
A.
,
2019
, “
Dry Generating Gear Grinding: Hierarchical Two-Step Finite Element Model for Process Optimization 2019
,”
Int. J. Mech. Sci.
,
141
(
6
), pp.
1087
1357
.
15.
Zhao
,
W.
,
Guo
,
Q.
,
Shu
,
C.
,
Zhen
,
Z.
, and
Wang
,
W.
,
2023
, “
Methods on Error-Modeling, Detection and Compensation in Gear Hobbing Process: A Short Review
,”
,
3
(
1
), pp.
2022019
.
16.
Zhou
,
Y. S.
,
Wang
,
S. H.
,
Wang
,
L. M.
,
Tang
,
J. Y.
, and
Chen
,
Z. C.
,
2019
, “
CNC Milling of Face Gears With a Novel Geometric Analysis
,”
Mech. Mach. Theory
,
139
, pp.
46
65
.
17.
Böttgera
,
J.
,
Kimmea
,
S.
, and
Drosse
,
W. G.
,
2019
, “
Simulation of Dressing Process for Continuous Generating Gear Grinding
,”
Procedia CIRP
,
79
, pp.
280
285
.
18.
Zhou
,
Y. S.
, and
Shao
,
M.
,
2005
, “
Form Grinding Technology for the Mold of Powder Metallurgy Gears
,”
Chin. J. Mech. Eng.
,
41
(
1
), pp.
162
165
.
19.
He
,
K.
,
Li
,
G. L.
,
Jiang
,
L.
,
Dong
,
X.
, and
Liu
,
P. X.
,
2018
, “
Calculation of Form Grinding Wheel Profile and Simulation of Envelope Surface Based on Digital Method
,”
Chin. J. Mech. Eng.
,
54
(
1
), pp.
205
213
.
20.
He
,
K.
,
Du
,
Y. B.
, and
Li
,
G. L.
,
2018
, “
Analysis on Tooth Surface Principle Error of Forming Grinding Lead Modification Helical Gear
,”
Comput. Integr. Manuf. Syst.
,
24
(
6
), pp.
1401
1410
.
21.
Chiang
,
C. J.
, and
Fong
,
Z. H.
,
2009
, “
Undercutting and Interference for Thread Form Grinding With a Tilt Angle
,”
Mech. Mach. Theory
,
44
(
11
), pp.
2066
2078
.
22.
Chiang
,
C. J.
, and
Fong
,
Z. H.
,
2010
, “
Design of Form Milling Cutters With Multiple Inserts for Screw Rotors
,”
Mech. Mach. Theory
,
45
(
11
), pp.
1613
1627
.
23.
Sheltami
,
K.
,
Bedi
,
S.
, and
Ismail
,
F.
,
1998
, “
Swept Volumes of Toroidal Cutters Using Generating Curves
,”
Int. J. Mach. Tools Manuf.
,
38
(
7
), pp.
855
870
.
24.
Zhu
,
L. M.
,
Ding
,
H.
, and
Xiong
,
Y. L.
,
2012
, “
Simultaneous Optimization of Tool Path and Shape for Five-Axis Flank Milling
,”
Comput. Aided Des.
,
44
(
12
), pp.
1229
1234
.
25.
Chiou
,
C. J.
, and
Lee
,
Y. S.
,
2002
, “
Swept Surface Determination for Five-Axis Numerical Control Machining
,”
Int. J. Mach. Tools Manuf.
,
42
(
14
), pp.
1497
1507
.
26.
Du
,
S. J.
,
Surmann
,
T.
,
Webber
,
O.
, and
Weinert
,
K.
,
2005
, “
Formulating Swept Profiles for Five-Axis Tool Motions
,”
Int. J. Mach. Tools Manuf.
,
45
(
7–8
), pp.
849
861
.
27.
Weinert
,
K.
,
Du
,
S.
,
Damm
,
P.
, and
Stautner
,
M.
,
2004
, “
Swept Volume Generation for the Simulation of Machining Processes
,”
Int. J. Mach. Tools Manuf.
,
44
(
6
), pp.
617
628
.
28.
Gong
,
H.
, and
Wang
,
N.
,
2009
, “
Analytical Calculation of the Envelope Surface for Generic Milling Tools Directly From CL-Data Based on the Moving Frame Method
,”
Comput. Aid. Des.
,
41
(
11
), pp.
848
855
.
29.
Guo
,
Q.
,
Zhao
,
B.
, and
Jiang
,
Y.
,
2018
, “
Process Simulation for Five-Axis Grinding Machining Using an Analytical Method
,”
Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci.
,
232
(
17
), pp.
2965
2975
.
30.
Jiang
,
Y.
, and
Guo
,
Q.
,
2020
, “
Simulation of Multi-Axis Grinding Considering Runout Based on Envelope Theory
,”
Chin. J. Aeronaut.
,
33
(
12
), pp.
3526
3534
.