Abstract

Product disassembly is a vital element of recycling and remanufacturing processes. The disassembly line balancing problem (DLBP), i.e., how to assign a set of tasks to a disassembly workstation, is crucial for a product disassembly process. Based on the importance of energy efficiency in product disassembly and the trend toward green remanufacturing, this study proposes an optimization model for a multi-objective disassembly line balancing problem that aims to minimize the idle rate, smoothness, cost, and energy consumption during the disassembly operation. Due to the complex nature of the optimization problem, a discrete whale optimization algorithm is proposed in this study, which is developed as an extension of the whale optimization algorithm. To enable the algorithm to solve discrete optimization problems, we propose coding and decoding methods that combine the features of DLBP. First of all, the initial disassembly solution is obtained by using K-means clustering to speed up the exchange of individual information. After that, new methods for updating disassembly sequences are developed, in which a local search strategy is introduced to increase the accuracy of the algorithm. Finally, the algorithm is used to solve the disassembly problem of a worm reducer and the first 12 feasible task allocation options in the Pareto frontier are shown. A comparison with typically existing algorithms confirms the high performance of the proposed whale optimization algorithm, which has a good balance of solution quality and efficiency.

References

1.
Tian
,
G.
,
Yuan
,
G.
,
Aleksandrov
,
A.
,
Zhang
,
T.
,
Li
,
Z.
,
Fathollahi-Fard
,
A. M.
, and
Ivanov
,
M.
,
2022
, “
Recycling of Spent Lithium-Ion Batteries: A Comprehensive Review for Identification of Main Challenges and Future Research Trends
,”
Sustain. Energy Technol. Assess.
,
53
(Part A), p.
102447
.
2.
Ding
,
L. P.
,
Tan
,
J. R.
,
Feng
,
Y. X.
, and
Gao
,
Y. C.
,
2009
, “
Multiobjective Optimization for Disassembly Line Balancing Based on Pareto Ant Colony Algorithm
,”
Comput. Integr. Manuf. Syst.
,
15
(
7
), pp.
1406
1413
.
3.
Yang
,
D. Y.
,
Xu
,
Z. G.
,
Zhu
,
J. F.
,
Su
,
K. Y.
, and
Liu
,
W. M.
,
2019
, “
Objective Selective Disassembly Sequence Planning Considered Product Fault Features
,”
J. Harbin Inst. Technol.
,
51
(
7
), pp.
160
170
.
4.
Zhang
,
C.
,
Fathollahi-Fard
,
A. M.
,
Li
,
J.
,
Tian
,
G.
, and
Zhang
,
T.
,
2021
, “
Disassembly Sequence Planning for Intelligent Manufacturing Using Social Engineering Optimizer
,”
Symmetry
,
13
(
4
), p.
663
.
5.
Cai
,
N.
,
2019
, “
Multi-objective Discrete Fruit Fly Optimization Algorithm and Simulation Analysis for Multi-constraint Disassembly Line Balancing Problem
,”
M.S. thesis
,
School of Mechanical Engineering, Southwest Jiaotong University
,
Chengdu, China
.
6.
Zhang
,
Z.
,
Guo
,
X.
,
Zhou
,
M.
,
Liu
,
S.
, and
Qi
,
L.
,
2020
, “
Multi-objective Discrete Grey Wolf Optimizer for Solving Stochastic Multi-objective Disassembly Sequencing and Line Balancing Problem
,”
2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC)
,
Toronto, ON, Canada
,
Oct. 11–14
,
IEEE
, pp.
682
687
.
7.
Wang
,
K.
,
Zhang
,
Z.
,
Mao
,
L.
, and
L
,
L. I.
,
2017
, “
Pareto Artificial Fish Swarm Algorithm for Multi-objective Disassembly Line Balancing Problems
,”
China Mech. Eng.
,
28
(
02
), p.
183
.
8.
Ali
,
S. M.
,
Paul
,
S. K.
,
Chowdhury
,
P.
,
Agarwal
,
R.
,
Mohammad Fathollahi-Fard
,
A.
,
Jose
,
C.
,
Jabbour
,
C.
, and
Luthra
,
S.
,
2021
, “
Modelling of Supply Chain Disruption Analytics Using an Integrated Approach: An Emerging Economy Example
,”
Expert Syst. Appl.
,
173
, p.
114690
.
9.
Henrioud
,
J. M.
, and
Bourjault
,
A.
,
1991
, “LEGA: A Computer-Aided Generator of Assembly Plans,”
Computer-Aided Mechanical Assembly Planning
,
Springer
,
Boston, MA
, pp.
191
215
.
10.
Demello
,
L. S. H.
, and
Sanderson
,
A. C.
,
1990
, “
AND/OR Graph Representation of Assembly Plans
,”
IEEE Trans. Rob. Autom.
,
6
(
2
), pp.
188
199
.
11.
Li
,
J. R.
,
Khoo
,
L. P.
, and
Tor
,
S. B.
,
2002
, “
A Novel Representation Scheme for Disassembly Sequence Planning
,”
Int. J. Adv. Manuf. Technol.
,
20
(
8
), pp.
621
630
.
12.
Huang
,
Y. M.
, and
Huang
,
C. T.
,
2002
, “
Disassembly Matrix for Disassembly Processes of Products
,”
Int. J. Prod. Res.
,
40
(
2
), pp.
255
273
.
13.
Issaoui
,
L.
,
Aifaoui
,
N.
, and
Benamara
,
A.
,
2017
, “
A Model of Mobility State of Parts, the Automation of Feasibility Test in Disassembly Sequence Generation
,”
Proc. Inst. Mech. Eng., Part C
,
231
(
20
), pp.
3702
3714
.
14.
Feng
,
Y. X.
,
Gao
,
Y. C.
,
Tian
,
G. D.
,
Li
,
Z. W.
,
Hu
,
H. S.
, and
Zheng
,
H.
,
2019
, “
Flexible Process Planning and End-of-Life Decision-Making for Product Recovery Optimization Based on Hybrid Disassembly
,”
IEEE Trans. Autom. Sci. Eng.
,
16
(
1
), pp.
311
326
.
15.
Tian
,
G. D.
,
Ren
,
Y. P.
,
Feng
,
Y. X.
,
Zhou
,
M. C.
,
Zhang
,
H. H.
, and
Tian
,
J. R.
,
2019
, “
Modeling and Planning for Dual-Objective Selective Disassembly Using AND/OR Graph and Discrete Artificial Bee Colony
,”
IEEE Trans. Ind. Inform.
,
15
(
4
), pp.
2456
2468
.
16.
Ilgin
,
M. A.
,
Akçay
,
H.
, and
Araz
,
C.
,
2017
, “
Disassembly Line Balancing Using Linear Physical Programming
,”
Int. J. Prod. Res.
,
55
(
20
), pp.
6108
6119
.
17.
Altekin
,
F. T.
,
2017
, “
A Comparison of Piecewise Linear Programming Formulations for Stochastic Disassembly Line Balancing
,”
Int. J. Prod. Res.
,
55
(
24
), pp.
7412
7434
.
18.
Bentaha
,
M. L.
,
Dolgui
,
A.
,
Battaia
,
O.
,
Riggs
,
R. J.
, and
Hu
,
J.
,
2018
, “
Profit-Oriented Partial Disassembly Line Design: Dealing With Hazardous Parts and Task Processing Times Uncertainty
,”
Int. J. Prod. Res.
,
56
(
24
), pp.
7220
7242
.
19.
Ren
,
Y. P.
,
Zhang
,
C. Y.
,
Zhao
,
F.
,
Tian
,
G. D.
,
Lin
,
W. W.
,
Meng
,
L. L.
, and
Li
,
H. L.
,
2018
, “
Disassembly Line Balancing Problem Using Interdependent Weights-Based Multi-criteria Decision Making and 2-Optimal Algorithm
,”
J. Clean. Prod.
,
174
, pp.
1475
1486
.
20.
Yuan
,
G.
,
Yang
,
Y. S.
,
Tian
,
G. D.
, and
Zhuang
,
Q. W.
,
2020
, “
Comprehensive Evaluation of Disassembly Performance Based on the Ultimate Cross-Efficiency and Extension-Gray Correlation Degree
,”
J. Clean. Prod.
,
245
, p.
118800
.
21.
Jiao
,
Q. L.
,
Xu
,
D.
, and
Li
,
C.
,
2016
, “
Product Disassembly Sequence Planning Based on Flower Pollination Algorithm
,”
Comput. Integr. Manuf. Syst.
,
22
(
12
), pp.
2791
2799
.
22.
Zhang
,
X. F.
,
Wei
,
G.
, and
Wang
,
L.
,
2015
, “
Parallel Disassembly Sequence Planning for Complex Products Based on Genetic Algorithm
,”
J. Comput. Aided Des. Comput. Graph.
,
27
(
7
), pp.
1327
1333
.
23.
Kalayci
,
C. B.
,
Polat
,
O.
, and
Gupta
,
S. M.
,
2016
, “
A Hybrid Genetic Algorithm for Sequence-Dependent Disassembly Line Balancing Problem
,”
Ann. Oper. Res.
,
242
(
2
), pp.
321
354
.
24.
Wang
,
K.
,
Li
,
X.
,
Gao
,
L.
,
Li
,
P.
, and
Gupta
,
S. M.
,
2021
, “
A Genetic Simulated Annealing Algorithm for Parallel Partial Disassembly Line Balancing Problem
,”
Appl. Soft Comput.
,
107
, p.
107404
.
25.
Li
,
Z.
, and
Janardhanan
,
M. N.
,
2021
, “
Modelling and Solving Profit-Oriented U-Shaped Partial Disassembly Line Balancing Problem
,”
Expert Syst. Appl.
,
183
, p.
115431
.
26.
Yin
,
T.
,
Zhang
,
Z.
, and
Jiang
,
J.
,
2021
, “
A Pareto-Discrete Hummingbird Algorithm for Partial Sequence-Dependent Disassembly Line Balancing Problem Considering Tool Requirements
,”
J. Manuf. Syst.
,
60
, pp.
406
428
.
27.
Zhu
,
L.
,
Zhang
,
Z.
, and
Guan
,
C.
,
2020
, “
Multi-objective Partial Parallel Disassembly Line Balancing Problem Using Hybrid Group Neighbourhood Search Algorithm
,”
J. Manuf. Syst.
,
56
, pp.
252
269
.
28.
Zhang
,
L.
,
Wu
,
Y.
,
Zhao
,
X.
,
Pan
,
S.
,
Li
,
Z.
,
Bao
,
H.
, and
Tian
,
Y.
,
2022
, “
A Multi-objective Two-Sided Disassembly Line Balancing Optimization Based on Artificial Bee Colony Algorithm: A Case Study of an Automotive Engine
,”
Int. J. Precis. Eng. Manuf. Green Technol.
,
9
(
5
), pp.
1329
1347
.
29.
Hu
,
P.
, and
Chu
,
F.
,
2022
, “
Bi-Objective Optimization for an Integrated Facility Location and Disassembly Line Balancing Problem
,”
IFAC-PapersOnLine
,
55
(
10
), pp.
1086
1091
.
30.
Guo
,
H.
,
Zhang
,
L.
,
Ren
,
Y.
,
Li
,
Y.
,
Zhou
,
Z.
, and
Wu
,
J.
,
2022
, “
Optimizing a Stochastic Disassembly Line Balancing Problem With Task Failure Via a Hybrid Variable Neighborhood Descent-Artificial Bee Colony Algorithm
,”
Int. J. Prod. Res.
, pp.
1
15
.
31.
Wei
,
T. T.
,
Guo
,
X.
,
Wang
,
J.
,
Qi
,
L.
,
Qin
,
S.
, and
Xu
,
G.
,
2022
, “
Multi-objective Discrete Harmony Search Algorithm for Disassembly Line Balance Problems Considering Human Body Posture Change
,”
4th International Conference on Informatics Engineering & Information Science (ICIEIS2021)
,
Tianjin, China
,
Feb. 14
,
SPIE
, Vol. 12161, pp.
16
26
.
32.
Huang
,
F.
,
Liu
,
P.
,
Guo
,
X.
,
Wang
,
J.
,
Qi
,
L.
,
Qin
,
S.
, and
Xu
,
G.
,
2022
, “
Bat Optimizer for Stochastic Multiple-Objective Disassembly Line Balancing Problem Subject to Disassembly Failure Cost
,”
4th International Conference on Informatics Engineering & Information Science (ICIEIS2021)
,
Tianjin, China
,
Feb. 14
,
SPIE
, Vol. 12161, pp.
408
417
.
33.
McGovern
,
S. M.
, and
Gupta
,
S. M.
,
2006
, “
Ant Colony Optimization for Disassembly Sequencing With Multiple Objectives
,”
Int. J. Adv. Manuf. Technol.
,
30
(
5
), pp.
481
496
.
34.
Zhu
,
X. T.
,
Zhang
,
Z. Q.
,
Zhu
,
X. M.
, and
Hu
,
J. Y.
,
2014
, “
An Ant Colony Algorithm for Solving Multiobjective Demolition Line Equilibrium Problems
,”
China Mech. Eng.
,
25
(
8
), p.
1075
.
35.
Liu
,
Y.
,
Jiang
,
Z.
, and
Yu
,
J.
,
2021
,
Human-Machine Collaboration-Based Disassembly Sequence Planning for Power Cell Systems
. Combined Machine Tools and Automated Machining Technology.
36.
Wolpert
,
D. H.
, and
Macready
,
W. G.
,
1997
, “
No Free Lunch Theorems for Optimization
,”
IEEE Trans. Evol. Comput.
,
1
(
1
), pp.
67
82
.
37.
Mirjalili
,
S.
, and
Lewis
,
A.
,
2016
, “
The Whale Optimization Algorithm
,”
Adv. Eng. Soft.
,
95
, pp.
51
67
.
38.
Tian
,
G.
,
Chu
,
J.
,
Liu
,
Y.
,
Ke
,
H.
,
Zhao
,
X.
, and
Xu
,
G.
,
2011
, “
Expected Energy Analysis for Industrial Process Planning Problem With Fuzzy Time Parameters
,”
Comput. Chem. Eng.
,
35
(
12
), pp.
2905
2912
.
39.
Liu
,
M.
,
Liu
,
X.
,
Chu
,
F.
,
Zheng
,
F. F.
, and
Chu
,
C. B.
,
2020
, “
Robust Disassembly Line Balancing With Ambiguous Task Processing Times
,”
Int. J. Prod. Res.
,
58
(
19
), pp.
5806
5835
.
40.
Liu
,
M.
,
Liu
,
X.
,
Chu
,
F.
,
Zheng
,
F. F.
, and
Chu
,
C. B.
,
2021
, “
An Exact Method for Disassembly Line Balancing Problem With Limited Distributional Information
,”
Int. J. Prod. Res.
,
59
(
3
), pp.
665
682
.
41.
Liu
,
X.
,
Chu
,
F.
,
Zheng
,
F. F.
,
Chu
,
C. B.
, and
Liu
,
M.
,
2021
, “
Distributionally Robust and Risk-Averse Optimisation for the Stochastic Multi-Product Disassembly Line Balancing Problem With Workforce Assignment
,”
Int. J. Prod. Res.
,
60
(
6
), pp.
1973
199
.
42.
Moosavi
,
J.
,
Naeni
,
L. M.
,
Fathollahi-Fard
,
A. M.
, and
Fiore
,
U.
,
2021
, “
Blockchain in Supply Chain Management: A Review, Bibliometric, and Network Analysis
,”
Environ. Sci. Pollut. Res.
43.
Tian
,
G.
,
Zhang
,
C.
,
Fathollahi-Fard
,
A. M.
,
Li
,
Z.
,
Zhang
,
C.
, and
Jiang
,
Z.
,
2022
, “
An Enhanced Social Engineering Optimizer for Solving an Energy-Efficient Disassembly Line Balancing Problem Based on Bucket Brigades and Cloud Theory
,”
IEEE Trans. Ind. Informat.
44.
Tian
,
G.
,
Fathollahi-Fard
,
A. M.
,
Ren
,
Y.
,
Li
,
Z.
, and
Jiang
,
X.
,
2022
, “
Multi-Objective Scheduling of Priority-Based Rescue Vehicles to Extinguish Forest Fires Using a Multi-objective Discrete Gravitational Search Algorithm
,”
Infor. Sci.
,
608
, pp.
578
596
.
45.
Tian
,
G.
,
Zhou
,
M.
,
Chu
,
J.
,
Qiang
,
T.
, and
Hu
,
H.
,
2014
, “
Stochastic Cost-Profit Tradeoff Model for Locating an Automotive Service Enterprise
,”
IEEE Trans. Autom. Sci. Eng.
,
12
(
2
), pp.
580
587
.
You do not currently have access to this content.