Abstract

Although it is an old technique, research on the hot rolling process maintains its importance because of its widespread usage in steel production and its requirement for a vast amount of resources, especially energy. The roll pass design of the hot rolling process considerably affects many operational parameters such as energy requirement, roll wear, working forces, and torques. Furthermore, due to the sequential nature of the rolling process, a design of any number of passes is closely interrelated with all other passes in the process. This complexity makes it challenging to find optimal design solutions that strike a balance between conflicting goals and constraints. In this article, a new optimized solution search strategy based on a desirability function is offered to address the sequential characteristics of the roll pass design. A novel optimization method utilizing response surfaces and the proposed solution search strategy is presented to reduce the shaping energy of the overall process while minimizing turning moments and radial forces on rolls during the rough rolling process. The proposed method provides integrated optimization of the process by ensuring information flow between the passes and can also be applied to other sequential processes with some modifications. The developed method and solution search strategy are illustrated and validated through a case study. The findings of the case study are compared to three distinct pass designs used in industrial power plants. The results show significant energy savings, lower turning moments, and reduced radial forces compared to the reference designs.

References

1.
Jiang
,
Z.
,
Zeng
,
Q.
,
Anderoglu
,
O.
,
Maloy
,
S.
,
Ehmann
,
K. F.
, and
Cao
,
J.
,
2023
, “
A Novel Heat-Assisted Three-Roll Incremental Rolling System for Flexible Rolling
,”
ASME J. Manuf. Sci. Eng.
,
145
(
1
), p.
011013
.
2.
Huang
,
B.
,
Xing
,
K.
,
Huang
,
K.
, and
Lan
,
H.
,
2014
, “
Development of a Geometric Modelling Strategy for Roll Pass Optimal Design
,”
Rob. Comput. Integr. Manuf.
,
30
(
6
), pp.
622
628
.
3.
Patel
,
A.
,
Malik
,
A.
, and
Mathews
,
R.
,
2022
, “
Efficient Three-Dimensional Model to Predict Time History of Structural Dynamics in Cold Rolling Mills
,”
ASME J. Manuf. Sci. Eng.
,
144
(
7
), p.
071009
.
4.
Wusatowski
,
Z.
,
1969
,
Fundamentals of Rolling
,
Pergamon
,
Gliwice, Poland
.
5.
Nellippallil
,
A. B.
,
Song
,
K. N.
,
Goh
,
C.-H.
,
Zagade
,
P.
,
Gautham
,
B. P.
,
Allen
,
J. K.
, and
Mistree
,
F.
,
2017
, “
A Goal-Oriented, Sequential, Inverse Design Method for the Horizontal Integration of a Multistage Hot Rod Rolling System
,”
ASME J. Mech. Des.
,
139
(
3
), p.
031403
.
6.
Nellippallil
,
A. B.
,
Song
,
K. N.
,
Goh
,
C.-H.
,
Zagade
,
P.
,
Gautham
,
B. P.
,
Allen
,
J. K.
, and
Mistree
,
F.
,
2016
, “
A Goal Oriented, Sequential Process Design of a Multi-Stage Hot Rod Rolling System
,”
42nd Design Automation Conference
,
Charlotte, NC
,
Aug. 21–24
, p. V02BT03A007.
7.
Oduguwa
,
V.
, and
Roy
,
R.
,
2006
, “
A Review of Rolling System Design Optimisation
,”
Int. J. Mach. Tools Manuf.
,
46
(
7–8
), pp.
912
928
.
8.
You
,
S.
,
Guan
,
J.
,
Alido
,
J.
,
Hwang
,
H. H.
,
Yu
,
R.
,
Kwe
,
L.
,
Su
,
H.
, and
Chen
,
S.
,
2020
, “
Mitigating Scattering Effects in Light-Based Three-Dimensional Printing Using Machine Learning
,”
ASME J. Manuf. Sci. Eng.
,
142
(
8
), p.
081002
.
9.
Lapovok
,
R.
, and
Thomson
,
P. F.
,
1997
, “
An Approach to the Optimal Design of Rolling Passes
,”
Int. J. Mach. Tools Manuf.
,
37
(
8
), pp.
1143
1154
.
10.
Kwon
,
H. C.
, and
Im
,
Y. T.
,
2002
, “
Interactive Computer-Aided-Design System for Roll Pass and Profile Design in Bar Rolling
,”
J. Mater. Process. Technol.
,
123
(
3
), pp.
399
405
.
11.
Vinogradov
,
A. I.
,
Timofeeva
,
M. A.
,
Korol’
,
S. O.
, and
Traino
,
A. I.
,
2013
, “
Development of a Rational Roll Pass Design for a Rolling Mill Using Performance Criteria
,”
Russ. Metall. (Met.)
,
2013
(
1
), pp.
43
47
.
12.
Park
,
J. J.
,
Rebelo
,
N.
, and
Kobayashi
,
S.
,
1983
, “
A New Approach to Preform Design in Metal Forming With the Finite Element Method
,”
Int. J. Mach. Tool Des. Res.
,
23
(
1
), pp.
71
79
.
13.
Altan
,
T.
, and
Knoerr
,
M.
,
1992
, “
Application of the 2D Finite Element Method to Simulation of Cold-Forging Processes
,”
J. Mater. Process. Technol.
,
35
(
3
), pp.
275
302
.
14.
Liu
,
H.
,
Wang
,
C.
,
Li
,
P.
,
Wang
,
S.
,
Li
,
X.
, and
Wang
,
Y.
,
2022
, “
Suppression Mechanism and Prediction Model of Top Burr in Metal Milling Under Ice Boundary Constraint
,”
ASME J. Manuf. Sci. Eng.
,
144
(
12
), p.
121011
.
15.
Brinza
,
V. V.
, and
Kuznetsov
,
I. S.
,
2014
, “
Modeling the Laws That Determine the Quality of Rolled Rounds During the Rolling Operation
,”
Metallurgist
,
58
(
5–6
), pp.
510
515
.
16.
Çavdar
,
F.
,
Kanca
,
E.
,
Yaşar
,
M.
,
Günen
,
A.
,
Kalleci
,
I.
, and
Demir
,
M.
,
2015
, “
Modeling of Rough Rolling Process by Using Finite Element Method
,”
2nd International Iron & Steel Symposium IISS’15
,
Karabuk, Turkey
,
Apr. 1–2
, pp.
748
753
.
17.
Kurt
,
G.
,
2019
,
Çelik Profillerin Sıcak Haddelenmesinde Merdane Kalibre Tasarımı ve Simulasyonu
,
Karabük Üniversitesi
,
Yüksel Liisans
.
18.
Winiarski
,
G.
, and
Dziubińska
,
A.
,
2021
, “
Analysis of a New Process of Forging a 2017A Aluminum Alloy Connecting Rod
,”
ASME J. Manuf. Sci. Eng.
,
143
(
8
), p.
081006
.
19.
Oduguwa
,
V.
,
Tiwari
,
A.
, and
Roy
,
R.
,
2004
, “Sequential Process Optimisation Using Genetic Algorithms,”
Parallel Problem Solving From Nature—PPSN VIII. PPSN 2004
,
X.
Yao
,
E. K.
Burke
,
J. A.
Lozano
,
J.
Smith
,
J. J.
Merelo-Guervós
,
J. A.
Bullinaria
,
J. E.
Rowe
,
P.
Tiňo
,
A.
Kabán
, and
H.-P.
Schwefel
, eds.,
Springer Berlin Heidelberg
,
Berlin/Heidelberg
, pp.
782
791
.
20.
Joun
,
M. S.
, and
Hwang
,
S. M.
,
1993
, “
Optimal Process Design in Steady-State Metal Forming by Finite Element Method—II. Application to Die Profile Design in Extrusion
,”
Int. J. Mach. Tools Manuf.
,
33
(
1
), pp.
63
70
.
21.
Huang
,
B.
,
Xing
,
K.
,
Abhary
,
K.
, and
Spuzic
,
S.
,
2012
, “
Optimization of Oval-Round Pass Design Using Genetic Algorithm
,”
Rob. Comput. Integr. Manuf.
,
28
(
4
), pp.
493
499
.
22.
Lambiase
,
F.
,
2013
, “
Optimization of Shape Rolling Sequences by Integrated Artificial Intelligent Techniques
,”
Int. J. Adv. Manuf. Technol.
,
68
(
1–4
), pp.
443
452
.
23.
Wang
,
Q.
,
Huang
,
P.
, and
Yin
,
Y.
,
2021
, “
Design and Optimization of Rolling Mills Pass Based on Parameterization and Orthogonal Test
,”
Int. J. Adv. Manuf. Technol.
,
112
(
3–4
), pp.
803
818
.
24.
Huang
,
B.
,
Xing
,
K.
,
Abhary
,
K.
, and
Spuzic
,
S.
,
2012
, “
Development of Energy-Saving Optimization for the Oval-Edging Oval Pass Design Using Genetic Algorithm
,”
Int. J. Adv. Manuf. Technol.
,
61
(
5–8
), pp.
423
429
.
25.
Harrington
,
E. C.
,
1965
, “
The Desirability Function
,”
Ind. Qual. Control
,
21
(
10
), pp.
494
498
.
26.
Derringer
,
G.
, and
Suich
,
R.
,
1980
, “
Simultaneous Optimization of Several Response Variables
,”
J. Qual. Technol.
,
12
(
4
), pp.
214
219
.
27.
Yılmaz
,
M.
,
1988
,
Metallerin Haddelenmesi
,
Türkiye Demir ve Çelik İşletmeleri
,
Hatay
.
28.
Li
,
T.
,
Li
,
H.
,
Li
,
R.
,
Wang
,
Z.
, and
Wang
,
G.
,
2019
, “
Work Roll Surface Profile Design and Optimization for Hot-Core Heavy Reduction Rolling Process
,”
ISIJ Int.
,
59
(
7
), pp.
1314
1322
.
29.
Çavdar
,
F.
, and
Kanca
,
E.
,
2020
, “
Utilization of Response Surfaces in Optimization of Roll Pass Design in Hot Rolling
,”
Emerg. Mater. Res.
,
9
(
4
), pp.
1
12
.
30.
Chadha
,
K.
,
Shahriari
,
D.
, and
Jahazi
,
M.
,
2018
, “An Approach to Develop Hansel–Spittel Constitutive Equation During Ingot Breakdown Operation of Low Alloy Steels,”
Frontiers in Materials Processing, Applications, Research and Technology
,
M.
Muruganant
,
C.
Ali
, and
B.
Raj
, eds.,
Springer
,
Singapore
, pp.
239
246
.
31.
Nellippallil
,
A. B.
,
Rangaraj
,
V.
,
Gautham
,
B.
,
Singh
,
A. K.
,
Allen
,
J. K.
, and
Mistree
,
F.
,
2017
, “
A Goal-Oriented, Inverse Decision-Based Design Method to Achieve the Vertical and Horizontal Integration of Models in a Hot Rod Rolling Process Chain
,”
Proceedings of the ASME Design Engineering Technical Conference
,
Cleveland, OH
,
Aug. 6–9
.
32.
Oduguwa
,
V.
,
Roy
,
R.
, and
Farrugia
,
D.
,
2007
, “
Development of a Soft Computing-Based Framework for Engineering Design Optimisation With Quantitative and Qualitative Search Spaces
,”
Appl. Soft Comput.
,
7
(
1
), pp.
166
188
.
33.
Wang
,
M.
,
Li
,
X.
,
Du
,
F.
, and
Zheng
,
Y.
,
2005
, “
A Coupled Thermal-Mechanical and Microstructural Simulation of the Cross Wedge Rolling Process and Experimental Verification
,”
Mater. Sci. Eng. A
,
391
(
1–2
), pp.
305
312
.
34.
Hibbeler
,
R. C.
,
2010
,
Engineering Mechanics: Dynamics
,
Prentice Hall
,
NJ
.
35.
Box
,
G. E. P.
, and
Draper
,
N. R.
,
2007
,
Response Surfaces, Mixtures, and Ridge Analyses
, 2nd ed.,
John Wiley & Sons
,
Hoboken, NJ
.
36.
Dinov
,
I.
,
2020
, “
F Distribution Tables
,” p.
1
, http://www.socr.ucla.edu/Applets.dir/F_Table.html, Accessed February 4, 2021.
You do not currently have access to this content.