Abstract

Material flow and heat generation by tool shoulder during Friction Stir Welding (FSW) significantly alters the microstructural and thermomechanical behavior of joints. The effect of shoulder size on mechanical properties of joints has not yet been reported in the FSW of Tailor-Welded Blanks (TWBs). This article reports the effect of shoulder size on joint quality in FSW of TWBs between 6.35 mm thick plates of AA2024-T3 and 2.5 mm thick plates of AA7475-T7 alloys in butt joint configuration fabricated under shoulder sizes: 18 mm, 20 mm, and 22 mm. Microstructural evaluation of FSWed joints reveals a significant increase in grain size with shoulder size. The X-ray energy-dispersive spectroscopic (EDS) elemental maps reveal the presence of fine second phase particles in the stir zone. The progressive elimination of void defects with the increase in shoulder size was observed. The tensile testing reveals the highest strength of joints fabricated via shoulder size of 18 mm. Fractographic analyses of broken tensile specimens showed the mixed mode of failure in all the welded specimens.

References

1.
Liu
,
K.
,
Chen
,
X.
,
Shen
,
Q.
,
Pan
,
Z.
,
Singh
,
R. A.
,
Jayalakshmi
,
S.
, and
Konovalov
,
S.
,
2020
, “
Microstructural Evolution and Mechanical Properties of Deep Cryogenic Treated Cu–Al–Si Alloy Fabricated by Cold Metal Transfer (CMT) Process
,”
Mater. Charact.
,
159
, p.
110011
.
2.
Starke Jr
,
E. A.
, and
Staley
,
J. T.
,
1996
, “
Application of Modern Aluminum Alloys to Aircraft
,”
Prog. Aerosp. Sci.
,
32
(
2–3
), pp.
131
172
.
3.
Mishra
,
R. S.
, and
Ma
,
Z. Y.
,
2005
, “
Friction Stir Welding and Processing
,”
Mater. Sci. Eng. R Rep.
,
50
(
1–2
), pp.
1
76
.
4.
Fonda
,
R. W.
, and
Bingert
,
J. F.
,
2004
, “
Microstructural Evolution in the Heat-Affected Zone of a Friction Stir Weld
,”
Metall. Mater. Trans. A
,
35
(
5
), pp.
1487
1499
.
5.
Arora
,
A.
,
De
,
A.
, and
DebRoy
,
T.
,
2011
, “
Toward Optimum Friction Stir Welding Tool Shoulder Diameter
,”
Scr. Mater.
,
64
(
1
), pp.
9
12
.
6.
Auto/Steel Partnership
,
1997
, Tailor Welded Blank Acceptance Guidelines, Automotive Application Committee, American Iron and Steel Institute, https://www.a-sp.org.
7.
Bonome
,
E. C.
,
Carletti
,
C. B.
,
De Alcantara
,
N. G.
, and
Dos Santos
,
J. F.
,
2007
, “
Friction Stir Welding—FSW Applied to Tailored Blanks
,”
Weld. Int.
,
21
(
4
), pp.
279
283
.
8.
Majeed
,
T.
,
Mehta
,
Y.
, and
Siddiquee
,
A. N.
,
2021
, “
Challenges in Joining of Unequal Thickness Materials for Aerospace Applications: A Review
,”
Proc. Inst. Mech. Eng. L: J. Mater.: Des. Appl.
,
235
(
4
), pp.
934
945
.
9.
Sinke
,
J.
,
Iacono
,
C.
, and
Zadpoor
,
A.
,
2010
, “
Tailor Made Blanks for the Aerospace Industry
,”
Int. J. Mater. Form.
,
3
(
S1
), pp.
849
852
.
10.
Donatus
,
U.
,
Thompson
,
G. E.
,
Zhou
,
X.
,
Wang
,
J.
,
Cassell
,
A.
, and
Beamish
,
K.
,
2015
, “
Corrosion Susceptibility of Dissimilar Friction Stir Welds of AA5083 and AA6082 Alloys
,”
Mater. Charact.
,
107
, pp.
85
97
.
11.
Buffa
,
G.
,
Fratini
,
L.
,
Hua
,
J.
, and
Shivpuri
,
R.
,
2006
, “
Friction Stir Welding of Tailored Blanks: Investigation on Process Feasibility
,”
CIRP Ann.
,
55
(
1
), pp.
279
282
.
12.
Avinash
,
P.
,
Mano
,
M.
,
Arivazhagan
,
N.
,
Ramkumar
,
K. D.
, and
Narayanan
,
S.
,
2014
, “
Friction Stir Welded Butt Joints of AA2024 T3 and AA7075 T6 Aluminum Alloys
,”
Procedia Eng.
,
75
, pp.
98
102
.
13.
Fonda
,
R. W.
,
Knipling
,
K. E.
, and
Bingert
,
J. F.
,
2007
, “
Microstructural Evolution Ahead of the Tool in Aluminum Friction Stir Welds
,”
Scr. Mater.
,
58
(
5
), pp.
343
348
.
14.
Majeed
,
T.
,
Mehta
,
Y.
, and
Siddiquee
,
A. N.
,
2020
, “
Analysis of Tool Wear and Deformation in Friction Stir Welding of Unequal Thickness Dissimilar Al Alloys
,”
Proc. Inst. Mech. Eng., Part L
,
235
(
3
), pp.
501
512
.
15.
Zhang
,
Z.
,
Liu
,
Y. L.
, and
Chen
,
J. T.
,
2009
, “
Effect of Shoulder Size on the Temperature Rise and the Material Deformation in Friction Stir Welding
,”
Int. J. Adv. Manuf. Technol.
,
45
(
9–10
), pp.
889
895
.
16.
Fonda
,
R. W.
, and
Lambrakos
,
S. G.
,
2002
, “
Analysis of Friction Stir Welds Using an Inverse Problem Approach
,”
Sci. Technol. Weld. Join.
,
7
(
3
), pp.
177
181
.
17.
Murr
,
L. E.
,
2010
, “
A Review of FSW Research on Dissimilar Metal and Alloy Systems
,”
J. Mater. Eng. Perform.
,
19
(
8
), pp.
1071
1089
.
18.
Ouyang
,
J. H.
, and
Kovacevic
,
R.
,
2002
, “
Material Flow and Microstructure in the Friction Stir Butt Welding Welds of the Same and Dissimilar Aluminum Alloys
,”
J. Mater. Eng. Perform.
,
11
(
1
), pp.
51
63
.
19.
Weng
,
Z.
,
Liu
,
X.
,
Gu
,
K.
,
Guo
,
J.
,
Cui
,
C.
, and
Wang
,
J.
,
2020
, “
Modification of Residual Stress and Microstructure in Aluminium Alloy by Cryogenic Treatment
,”
Mater. Sci. Technol.
,
36
(
14
), pp.
1547
1555
.
20.
Threadgill
,
P. L.
,
Leonard
,
A. J.
,
Shercliff
,
H. R.
, and
Withers
,
P. J.
,
2009
, “
Friction Stir Welding of Aluminum Alloys
,”
Int. Mat. Rev.
,
54
(
2
), pp.
49
93
.
21.
Zuiko
,
I. S.
,
Mironov
,
S.
, and
Kaibyshev
,
R.
,
2020
, “
Unusual Ageing Behaviour of Friction Stir Welded Al–Cu–Mg Alloy
,”
Mater. Sci. Eng., A
,
793
, p.
139882
.
22.
Su
,
J. Q.
,
Nelson
,
T.
,
Mishra
,
R.
, and
Mahoney
,
M.
,
2003
, “
Microstructural Investigation of Friction Stir Welded 7050–T651 Aluminium
,”
Acta Mater.
,
51
(
3
), pp.
713
729
.
23.
Lotfi
,
A. H.
, and
Nourouzi
,
S.
,
2014
, “
Predictions of the Optimized Friction Stir Welding Process Parameters for Joining AA7075-T6 Aluminum Alloy Using the Preheating System
,”
Int. J. Adv. Manuf. Technol.
,
73
(
9–12
), pp.
1717
1737
.
24.
Lienert
,
T. J.
,
Stellwag Jr.
,
W. L.
,
Grimmett
,
B. B.
, and
Warke
,
R. W.
,
2003
, “
Friction Stir Welding Studies on Mild Steel
,”
Weld. J.
,
82
(
1
), pp.
1
9
.
You do not currently have access to this content.