Abstract

Burnishing has been increasingly utilized to improve the surface integrity of manufactured components. The generation of surface and subsurface layers with ultrafine grains, attributed to severe plastic deformation (SPD) and dynamic recrystallization (DRX), leads to improved surface integrity characteristics including surface and subsurface hardness and reduction in surface roughness. Additionally, due to the generation of compressive stresses within the refined layers, increase in fatigue life and improved wear and corrosion resistance can be achieved. In this study, we apply cryogenic burnishing on Al 7050-T7451 discs and compare the surface integrity characteristics with dry conventional burnishing. A special roller burnishing tool with flexible rotating roller head was designed and used to perform the cryogenic burnishing experiments using liquid nitrogen as the coolant. The results show that cryogenic burnishing can increase the surface hardness by an average of 20–30% within a layer depth of 200 µm compared with only 5–10% increase using dry conventional burnishing. Refined layers with nano grain structure were also generated. During cryogenic burnishing, the tangential burnishing forces were higher than those of dry conventional burnishing due to rapid cooling and work hardening of the material.

References

1.
Valiev
,
R. Z.
,
Estrin
,
Y.
,
Horita
,
Z.
,
Langdon
,
T. G.
,
Zechetbauer
,
M. J.
, and
Zhu
,
Y. T.
,
2006
, “
Producing Bulk Ultrafine-Grained Materials by Severe Plastic Deformation
,”
JOM
,
58
(
4
), pp.
33
39
.
2.
Azushima
,
A.
,
Kopp
,
R.
,
Korhonen
,
A.
,
Yang
,
D.-Y.
,
Micari
,
F.
,
Lahoti
,
G.
,
Groche
,
P.
,
Yanagimoto
,
J.
,
Tsuji
,
N.
, and
Rosochowski
,
A.
,
2008
, “
Severe Plastic Deformation (SPD) Processes for Metals
,”
CIRP Ann.
,
57
(
2
), pp.
716
735
.
3.
Mishra
,
R. S.
, and
Ma
,
Z.
,
2005
, “
Friction Stir Welding and Processing
,”
Mater. Sci. Eng. R Rep.
,
50
(
1–2
), pp.
1
78
.
4.
Khanna
,
N.
,
Sharma
,
P.
,
Bharati
,
M.
, and
Badheka
,
V. J.
,
2020
, “
Friction Stir Welding of Dissimilar Aluminium Alloys AA 6061-T6 and AA 8011-H14: A Novel Study
,”
J. Braz. Soc. Mech. Sci. Eng.
,
42
(
1
), pp.
1
12
.
5.
Khanna
,
N.
,
Chaudhary
,
B.
,
Airao
,
J.
,
Dak
,
G.
, and
Badheka
,
V. J.
,
2019
, “Experimental Comparison of TIG and Friction Stir Welding Process for AA6063-T6 Aluminum Alloy,”
Innovations in Infrastructure
,
Springer
,
Singapore
, pp.
619
628
.
6.
Estrin
,
Y.
, and
Vinogradov
,
A.
,
2013
, “
Extreme Grain Refinement by Severe Plastic Deformation: A Wealth of Challenging Science
,”
Acta Mater.
,
61
(
3
), pp.
782
817
.
7.
Skalski
,
K.
,
Morawski
,
A.
, and
Przybylski
,
W.
,
1995
, “
Analysis of Contact Elastic-Plastic Strains During the Process of Burnishing
,”
Int. J. Mech. Sci.
,
37
(
5
), pp.
461
472
.
8.
Black
,
A.
,
Kopalinsky
,
E.
, and
Oxley
,
P.
,
1997
, “
Analysis and Experimental Investigation of a Simplified Burnishing Process
,”
Int. J. Mech. Sci.
,
39
(
6
), pp.
629
641
.
9.
El-Khabeery
,
M.
, and
El-Axir
,
M.
,
2001
, “
Experimental Techniques for Studying the Effects of Milling Roller-Burnishing Parameters on Surface Integrity
,”
Int. J. Mach. Tools Manuf.
,
41
(
12
), pp.
1705
1719
.
10.
Grzesik
,
W.
, and
Żak
,
K.
,
2012
, “
Modification of Surface Finish Produced by Hard Turning Using Superfinishing and Burnishing Operations
,”
J. Mater. Process. Technol.
,
212
(
1
), pp.
315
322
.
11.
Klocke
,
F.
,
Bäcker
,
V.
,
Wegner
,
H.
, and
Zimmermann
,
M.
,
2011
, “
Finite Element Analysis of the Roller Burnishing Process for Fatigue Resistance Increase of Engine Components
,”
Proc. Inst. Mech. Eng., Part B
,
225
(
1
), pp.
2
11
.
12.
Hamadache
,
H.
,
Laouar
,
L.
,
Zeghib
,
N.
, and
Chaoui
,
K.
,
2006
, “
Characteristics of Rb40 Steel Superficial Layer Under Ball and Roller Burnishing
,”
J. Mater. Process. Technol.
,
180
(
1–3
), pp.
130
136
.
13.
Prevéy
,
P. S.
, and
Cammett
,
J. T.
,
2004
, “
The Influence of Surface Enhancement by Low Plasticity Burnishing on the Corrosion Fatigue Performance of AA7075-T6
,”
Int. J. Fatigue
,
26
(
9
), pp.
975
982
.
14.
Yang
,
S.
,
Dillon
,
O. W.
, Jr.
,
Puleo
,
D. A.
, and
Jawahir
,
I. S.
,
2013
, “
Effect of Cryogenic Burnishing on Surface Integrity Modifications of Co-Cr-Mo Biomedical Alloy
,”
J. Biomed. Mater. Res., Part B
,
101
(
1
), pp.
139
152
.
15.
Yang
,
S.
,
2012
, “
Cryogenic Burnishing of Co-Cr-Mo Biomedical Alloy for Enhanced Surface Integrity and Improved Wear Performance
,”
University of Kentucky
,
Lexington, KY
.
16.
Pu
,
Z.
,
Yang
,
S.
,
Song
,
G.-L.
,
Dillon
,
O.
, Jr.
,
Puleo
,
D.
, and
Jawahir
,
I.
,
2011
, “
Ultrafine-Grained Surface Layer on Mg–Al–Zn Alloy Produced by Cryogenic Burnishing for Enhanced Corrosion Resistance
,”
Scr. Mater.
,
65
(
6
), pp.
520
523
.
17.
Caudill
,
J.
,
Huang
,
B.
,
Arvin
,
C.
,
Schoop
,
J.
,
Meyer
,
K.
, and
Jawahir
,
I.
,
2014
, “
Enhancing the Surface Integrity of Ti-6Al-4V Alloy Through Cryogenic Burnishing
,”
Procedia CIRP
,
13
, pp.
243
248
.
18.
Alcoa
,
2012
, “Discover Aluminum Again. Discover Alcoa’s Cost-Effective and Proven New Technology,” Alcoa User Manual, https://www.millproducts-alcoa.com/
19.
Baró
,
M.
,
Kolobov
,
Y. R.
,
Ovid'ko
,
I.
,
Schaefer
,
H.
,
Straumal
,
B.
,
Valiev
,
R.
,
Alexandrov
,
I.
,
Ivanov
,
M.
,
Reimann
,
K.
, and
Reizis
,
A.
,
2001
, “
Diffusion and Related Phenomena in Bulk Nanostructured Materials
,”
Rev. Adv. Mater. Sci.
,
2
(
1
), pp.
1
43
.
20.
Balyanov
,
A.
,
Kutnyakova
,
J.
,
Amirkhanova
,
N.
,
Stolyarov
,
V.
,
Valiev
,
R.
,
Liao
,
X.
,
Zhao
,
Y.
,
Jiang
,
Y.
,
Xu
,
H.
, and
Lowe
,
T.
,
2004
, “
Corrosion Resistance of Ultra Fine-Grained Ti
,”
Scr. Mater.
,
51
(
3
), pp.
225
229
.
21.
Morehead
,
M.
,
Huang
,
Y.
, and
Hartwig
,
K. T.
,
2007
, “
Machinability of Ultrafine-Grained Copper Using Tungsten Carbide and Polycrystalline Diamond Tools
,”
Int. J. Mach. Tools Manuf.
,
47
(
2
), pp.
286
293
.
22.
Lapovok
,
R.
,
Molotnikov
,
A.
,
Levin
,
Y.
,
Bandaranayake
,
A.
, and
Estrin
,
Y.
,
2012
, “
Machining of Coarse Grained and Ultra Fine Grained Titanium
,”
J. Mater. Sci.
,
47
(
11
), pp.
4589
4594
.
23.
Zhao
,
Z.
, and
Hong
,
S.
,
1992
, “
Cooling Strategies for Cryogenic Machining From a Materials Viewpoint
,”
J. Mater. Eng. Perform.
,
1
(
5
), pp.
669
678
.
24.
Yang
,
S.
,
Puleo
,
D.
,
Dillon
,
O.
, and
Jawahir
,
I.
,
2011
, “
Surface Layer Modifications in Co-Cr-Mo Biomedical Alloy From Cryogenic Burnishing
,”
Procedia Eng.
,
19
, pp.
383
388
.
25.
Wen
,
C.-D.
, and
Mudawar
,
I.
,
2004
, “
Emissivity Characteristics of Roughened Aluminum Alloy Surfaces and Assessment of Multispectral Radiation Thermometry (MRT) Emissivity Models
,”
Int. J. Heat Mass Transfer
,
47
(
17–18
), pp.
3591
3605
.
26.
Strasik
,
M.
,
Hull
,
J.
,
Mittleider
,
J.
,
Gonder
,
J.
,
Johnson
,
P.
,
McCrary
,
K.
, and
McIver
,
C.
,
2010
, “
An Overview of Boeing Flywheel Energy Storage Systems With High-Temperature Superconducting Bearings
,”
Supercond. Sci. Technol.
,
23
(
3
), p.
034021
.
27.
Tang
,
Z.
,
Liu
,
Z.
,
Pan
,
Y.
,
Wan
,
Y.
, and
Ai
,
X.
,
2009
, “
The Influence of Tool Flank Wear on Residual Stresses Induced by Milling Aluminum Alloy
,”
J. Mater. Process. Technol.
,
209
(
9
), pp.
4502
4508
.
28.
Fu
,
X. L.
,
Wang
,
H.
,
Wan
,
Y.
, and
Wang
,
X. Q.
,
2010
, “
Material Constitutive Model in Machining 7050-T7451 by Orthogonal Machining Experiments
,”
Adv. Mater. Res.
,
97–101
, pp.
713
716
.
29.
Sandstrom
,
D.
, and
Hodowany
,
J.
,
1998
, “
Modeling the Physics of Metal Cutting in High-Speed Machining
,”
Mach. Sci. Technol.
,
2
(
2
), pp.
343
353
.
30.
Jawahir
,
I.
,
Attia
,
H.
,
Biermann
,
D.
,
Duflou
,
J.
,
Klocke
,
F.
,
Meyer
,
D.
,
Newman
,
S.
,
Pusavec
,
F.
,
Putz
,
M.
, and
Rech
,
J.
,
2016
, “
Cryogenic Manufacturing Processes
,”
CIRP Ann.
,
65
(
2
), pp.
713
736
.
You do not currently have access to this content.