Abstract

Five-axis ball-end milling is used extensively to machine parts with sculptured surfaces. This paper presents the general cutting dynamics model of the ball-end milling process for machine tools with different five-axis configurations. The structural dynamics of both the tool and workpiece are considered for the prediction of chatter stability at each tool location along the tool path. The effects of tool–workpiece engagement and tool axis orientation are included in the model. By sweeping the spindle speeds, the chatter-free spindle speeds are selected followed by the prediction of forced vibrations in five-axis milling of thin-walled, flexible parts. The proposed model has been experimentally illustrated to predict the chatter stability and forced vibrations on a table-tilting five-axis computer numerical control machine tool.

References

1.
Altintas
,
Y.
, and
Lee
,
P.
,
1998
, “
Mechanics and Dynamics of Ball End Milling
,”
ASME J. Manuf. Sci. Eng.
,
120
(
4
), pp.
684
692
. 10.1115/1.2830207
2.
Quintana
,
G.
, and
Ciurana
,
J.
,
2011
, “
Chatter in Machining Processes: A Review
,”
Int. J. Mach. Tools Manuf.
,
51
(
5
), pp.
363
376
. 10.1016/j.ijmachtools.2011.01.001
3.
Altintas
,
Y.
,
2012
,
Manufacturing Automation: Metal Cutting Mechanics, Machine Tool Vibrations, and CNC Design
,
Cambridge University Press
,
New York
.
4.
Tlusty
,
J.
,
Zaton
,
W.
, and
Ismail
,
F.
,
1983
, “
Stability Lobes in Milling
,”
CIRP Ann.—Manuf. Technol.
,
32
(
1
), pp.
309
313
. 10.1016/S0007-8506(07)63411-8
5.
Altintas
,
Y.
, and
Budak
,
E.
,
1995
, “
Analytical Prediction of Stability Lobes in Milling
,”
CIRP Ann.
,
44
(
1
), pp.
357
362
. 10.1016/S0007-8506(07)62342-7
6.
Insperger
,
T.
, and
Stépán
,
G.
,
2004
, “
Updated Semi-Discretization Method for Periodic Delay-Differential Equations With Discrete Delay
,”
Int. J. Numer. Methods Eng.
,
61
(
1
), pp.
117
141
. 10.1002/nme.1061
7.
Ding
,
Y.
,
Zhu
,
L.
,
Zhang
,
X.
, and
Ding
,
H.
,
2010
, “
A Full-Discretization Method for Prediction of Milling Stability
,”
Int. J. Mach. Tools Manuf.
,
50
(
5
), pp.
502
509
. 10.1016/j.ijmachtools.2010.01.003
8.
Altintas
,
Y.
,
Shamoto
,
E.
,
Lee
,
P.
, and
Budak
,
E.
,
1999
, “
Analytical Prediction of Stability Lobes in Ball End Milling
,”
ASME J. Manuf. Sci. Eng.
,
121
(
4
), pp.
586
592
. 10.1115/1.2833064
9.
Zhang
,
J.
,
Li
,
J.
,
Xie
,
Z.
,
Du
,
C.
,
Gui
,
L.
, and
Zhao
,
W.
,
2017
, “
Rapid Dynamics Prediction of Tool Point for Bi-Rotary Head Five-Axis Machine Tool
,”
Precis. Eng.
,
48
, pp.
203
215
. 10.1016/j.precisioneng.2016.12.003
10.
Schmitz
,
T. L.
,
2000
, “
Predicting High-Speed Machining Dynamics by Substructure Analysis
,”
CIRP Ann.—Manuf. Technol.
,
49
(
1
), pp.
303
308
. 10.1016/S0007-8506(07)62951-5
11.
Tunc
,
L. T.
, and
Budak
,
E.
,
2009
, “
Extraction of 5-Axis Milling Conditions From CAM Data for Process Simulation
,”
Int. J. Adv. Manuf. Technol.
,
43
(
5–6
), pp.
538
550
. 10.1007/s00170-008-1735-7
12.
Ozturk
,
E.
, and
Budak
,
E.
,
2010
, “
Dynamics and Stability of Five-Axis Ball-End Milling
,”
ASME J. Manuf. Sci. Eng.
,
132
(
2
), pp.
237
247
. 10.1115/1.4001038
13.
Tuysuz
,
O.
, and
Altintas
,
Y.
,
2019
, “
Analytical Modeling of Process Damping in Machining
,”
ASME J. Manuf. Sci. Eng.
,
141
(
6
), p.
061006
. 10.1115/1.4043310
14.
Sun
,
C.
, and
Altintas
,
Y.
,
2016
, “
Chatter Free Tool Orientations in 5-Axis Ball-End Milling
,”
Int. J. Mach. Tools Manuf.
,
106
, pp.
89
97
. 10.1016/j.ijmachtools.2016.04.007
15.
Ringgaard
,
K.
,
Mohammadi
,
Y.
,
Merrild
,
C.
,
Balling
,
O.
, and
Ahmadi
,
K.
,
2019
, “
Optimization of Material Removal Rate in Milling of Thin-Walled Structures Using Penalty Cost Function
,”
Int. J. Mach. Tools Manuf.
,
145
, p.
103430
. 10.1016/j.ijmachtools.2019.103430
16.
Yang
,
J.
,
Aslan
,
D.
, and
Altintas
,
Y.
,
2018
, “
Identification of Workpiece Location on Rotary Tables to Minimize Tracking Errors in Five-Axis Machining
,”
Int. J. Mach. Tools Manuf.
,
125
, pp.
89
98
. 10.1016/j.ijmachtools.2017.11.009
17.
Denavit
,
J.
, and
Hartenberg
,
R. S.
,
1955
, “
A Kinematic Notation for Lower-Pair Mechanisms Based on Matrices
,”
ASME J. Appl. Mech.
,
22
(
2
), pp.
215
221
.
18.
Lynch
,
K. M.
, and
Park
,
F. C.
,
2017
,
Modern Robotics Mechanics, Planning, and Control
,
Cambridge University Press
,
New York
, http://hades.mech.northwestern.edu/index.php/Modern_Robotics
19.
Yang
,
J.
, and
Altintas
,
Y.
,
2013
, “
Generalized Kinematics of Five-Axis Serial Machines With Non-Singular Tool Path Generation
,”
Int. J. Mach. Tools Manuf.
,
75
, pp.
119
132
. 10.1016/j.ijmachtools.2013.09.002
20.
Murray
,
R. M.
,
Li
,
Z.
, and
Sastry
,
S. S.
,
1994
,
A Mathematical Introduction to Robotic Manipulation
,
CRC Press
,
Boca Raton, FL
.
21.
Tuysuz
,
O.
,
2018
,
Modeling of Machining Thin-Walled Aerospace Structures, Ph.D. Dissertation
,
University of British Columbia
,
Vancouver, Canada
.
22.
Kilic
,
Z. M.
, and
Altintas
,
Y.
,
2016
, “
Generalized Modelling of Cutting Tool Geometries for Unified Process Simulation
,”
Int. J. Mach. Tools Manuf.
,
104
, pp.
14
25
. 10.1016/j.ijmachtools.2016.01.007
23.
MACHPRO Virtual Machining System
,
2018
,
Manufacturing Automation Lab. Inc.
, www.malinc.com.
24.
Lee
,
P.
, and
Altintas
,
Y.
,
1996
, “
Prediction of Ball-End Milling Forces From Orthogonal Cutting Data
,”
Int. J. Mach. Tools Manuf.
,
36
(
9
), pp.
1059
1072
. 10.1016/0890-6955(95)00081-X
25.
Kilic
,
Z. M.
, and
Altintas
,
Y.
,
2016
, “
Generalized Mechanics and Dynamics of Metal Cutting Operations for Unified Simulations
,”
Int. J. Mach. Tools Manuf.
,
104
, pp.
1
13
. 10.1016/j.ijmachtools.2016.01.006
26.
Engin
,
S.
, and
Altintas
,
Y.
,
2001
, “
Mechanics and Dynamics of General Milling Cutters. Part I: Helical End Mills
,”
Int. J. Mach. Tools Manuf.
,
41
(
15
), pp.
2195
2212
. 10.1016/S0890-6955(01)00045-1
27.
Eynian
,
M.
,
2010
,
Chatter Stability of Turning and Milling With Process Damping
, Ph.D. Dissertation,
University of British Columbia
,
Vancouver, Canada
.
28.
Ferry
,
W. B.
, and
Altintas
,
Y.
,
2008
, “
Virtual Five-Axis Flank Milling of Jet Engine Impellers—Part I: Mechanics of Five-Axis Flank Milling
,”
ASME J. Manuf. Sci. Eng.
,
130
(
1
), p.
011005
. 10.1115/1.2815761
29.
Altintas
,
Y.
,
Yang
,
J.
, and
Kilic
,
Z. M.
,
2019
, “
Virtual Prediction and Constraint of Contour Errors Induced by Cutting Force Disturbances on Multi-Axis CNC Machine Tools
,”
CIRP Ann.
,
68
(
1
), pp.
377
380
. 10.1016/j.cirp.2019.04.019
30.
CUTPRO Advanced Machining System
,
2001
,
Manufacturing Automation Lab. Inc.
, www.malinc.com.
31.
Altintas
,
Y.
,
Eynian
,
M.
, and
Onozuka
,
H.
,
2008
, “
Identification of Dynamic Cutting Force Coefficients and Chatter Stability With Process Damping
,”
CIRP Ann.—Manuf. Technol.
,
57
(
1
), pp.
371
374
. 10.1016/j.cirp.2008.03.048
32.
Park
,
F. C.
,
Bobrow
,
J. E.
, and
Ploen
,
S. R.
,
1995
, “
A Lie Group Formulation of Robot Dynamics
,”
Int. J. Rob. Res.
,
14
(
6
), pp.
609
618
. 10.1177/027836499501400606
You do not currently have access to this content.