Abstract

Selective laser melting (SLM) is a powder bed fusion additive manufacturing technology that allows the production of high-performance metal parts with geometrically complex shapes, such as curved surface, can be used in practical engineering applications. In recent years, systematic attempts have been made to uncover the material-process-microstructure-property linkage in SLM-fabricated planar-surface metal parts; however, little is known on the performance and quality of SLM-fabricated metal parts with curved surfaces. In this paper, we studied the effects of build orientation on the geometric performance of SLM-built 316L stainless steel (SS) samples with a sinusoidal curved surface. The results indicated that the average values of profile roughness Ra and surface texture attributes Sa, Sk, and Vmc decreased with the increase in build orientation. Moreover, the locations at curvatures C2 and C4 exhibited the best surface finish at the build orientation of 75 deg and 90 deg. In addition, the least square method was used to fit the actual profile of the curved surface of as-built samples fabricated at each build orientation, and it was found the actual profile demonstrated the best consistency with the designed one at 90 deg build orientation. In this paper, the process–curvature–geometric performance relationship of SLM-built metal parts with curved surface was uncovered. In addition, this paper provides keen insights into assessing the geometric performance of SLM-built curved-surface metal parts and establishes a roadmap toward SLM-fabrication of metal parts with complex geometries for practical engineering applications.

References

References
1.
Yao
,
X.
,
Moon
,
S. K.
,
Lee
,
B. Y.
, and
Bi
,
G.
,
2017
, “
Effects of Heat Treatment on Microstructures and Tensile Properties of IN718/TiC Nanocomposite Fabricated by Selective Laser Melting
,”
Int. J. Precis. Eng. Manuf.
,
18
(
12
), pp.
1693
1701
. 10.1007/s12541-017-0197-y
2.
Simmons
,
J. C.
,
Chen
,
X.
,
Azizi
,
A.
,
Daeumer
,
M. A.
,
Zavalij
,
P. Y.
,
Zhou
,
G.
, and
Schiffres
,
S. N.
,
2020
, “
Influence of Processing and Microstructure on the Local and Bulk Thermal Conductivity of Selective Laser Melted 316L Stainless Steel
,”
Addit. Manuf.
,
32
, p.
100996
. 10.1016/j.addma.2019.100996
3.
Wang
,
D.
,
Mai
,
S.
,
Xiao
,
D.
, and
Yang
,
Y.
,
2016
, “
Surface Quality of the Curved Overhanging Structure Manufactured From 316-L Stainless Steel by SLM
,”
Int. J. Adv. Manuf. Tech.
,
86
(
1–4
), pp.
781
792
. 10.1007/s00170-015-8216-6
4.
Kunze
,
K.
,
Etter
,
T.
,
Grässlin
,
J.
, and
Shklover
,
V.
,
2015
, “
Texture, Anisotropy in Microstructure and Mechanical Properties of IN738LC Alloy Processed by Selective Laser Melting (SLM)
,”
Mater. Sci. Eng. A
,
620
, pp.
213
222
. 10.1016/j.msea.2014.10.003
5.
Kempen
,
K.
,
Yasa
,
E.
,
Thijs
,
L.
,
Kruth
,
J. P.
, and
Van Humbeeck
,
J.
,
2011
, “
Microstructure and Mechanical Properties of Selective Laser Melted 18Ni-300 Steel
,”
Phys. Proc.
,
12
, pp.
255
263
. 10.1016/j.phpro.2011.03.033
6.
Simonelli
,
M.
,
Tse
,
Y. Y.
, and
Tuck
,
C.
,
2014
, “
Effect of the Build Orientation on the Mechanical Properties and Fracture Modes of SLM Ti–6Al–4V
,”
Mater. Sci. Eng. A
,
616
, pp.
1
11
. 10.1016/j.msea.2014.07.086
7.
Guo
,
J.
,
Song
,
C.
,
Fu
,
Y.
,
Au
,
K. H.
,
Kum
,
C. W.
,
Goh
,
M. H.
,
Ren
,
T.
,
Huang
,
R.
, and
Sun
,
C.
,
2020
, “
Internal Surface Quality Enhancement of Selective Laser Melted Inconel 718 by Abrasive Flow Machining
,”
ASME J. Manuf. Sci. Eng.
,
142
(
10
), p.
101003
. 10.1115/1.4047141
8.
Lalehpour
,
A.
, and
Barari
,
A.
,
2018
, “
A More Accurate Analytical Formulation of Surface Roughness in Layer-Based Additive Manufacturing to Enhance the Product’s Precision
,”
Int. J. Adv. Manuf. Tech.
,
96
(
9–12
), pp.
3793
3804
. 10.1007/s00170-017-1448-x
9.
Alelaumi
,
S.
,
Zhou
,
Y.
,
Khoshkhoo
,
A.
, and
Ning
,
F.
,
2019
, “
Selective Laser Melting of Curved Surface Metal Parts: A Fundamental Study on Surface Finish and Dimensional Accuracy
,”
Proceedings of the ASME 2019 International Manufacturing Science and Engineering Conference (MSEC2019-2996)
,
Erie, PA
,
June 10–14
, pp. V001T01A018–V001T01A027.
10.
Koutiri
,
I.
,
Pessard
,
E.
,
Peyre
,
P.
,
Amlou
,
O.
, and
De Terris
,
T.
,
2018
, “
Influence of SLM Process Parameters on the Surface Finish, Porosity Rate and Fatigue Behavior of As-Built Inconel 625 Parts
,”
J. Mater. Process. Tech.
,
255
(
R1–R2
), pp.
536
546
. 10.1016/j.jmatprotec.2017.12.043
11.
Nguyen
,
Q. B.
,
Luu
,
D. N.
,
Nai
,
S. M. L.
,
Zhu
,
Z.
,
Chen
,
Z.
, and
Wei
,
J.
,
2018
, “
The Role of Powder Layer Thickness on the Quality of SLM Printed Parts
,”
Arch. Civ. Mech. Eng.
,
18
(
3
), pp.
948
955
. 10.1016/j.acme.2018.01.015
12.
Wang
,
D.
,
Wu
,
S.
,
Bai
,
Y.
,
Lin
,
H.
,
Yang
,
Y.
, and
Song
,
C.
,
2017
, “
Characteristics of Typical Geometrical Features Shaped by Selective Laser Melting
,”
J. Laser Appl.
,
29
(
2
), p.
022007
. 10.2351/1.4980164
13.
Dong
,
Z.
,
Liu
,
Y.
,
Li
,
W.
, and
Liang
,
J.
,
2019
, “
Orientation Dependency for Microstructure, Geometric Accuracy and Mechanical Properties of Selective Laser Melting AlSi10Mg Lattices
,”
J. Alloys Compd.
,
791
, pp.
490
500
. 10.1016/j.jallcom.2019.03.344
14.
Spierings
,
A. B.
,
Herres
,
N.
, and
Levy
,
G.
,
2011
, “
Influence of the Particle Size Distribution on Surface Quality and Mechanical Properties in AM Steel Parts
,”
Rapid Prototyping J.
,
17
(
3
), pp.
195
202
. 10.1108/13552541111124770
15.
Singh
,
R.
, and
Davim
,
J. P.
,
2018
,
Additive Manufacturing: Applications and Innovations
,
CRC Press
,
Boca Raton, FL
.
16.
Obeidi
,
M. A.
,
McCarthy
,
E.
,
O’Connell
,
B.
,
Ul Ahad
,
I.
, and
Brabazon
,
D.
,
2019
, “
Laser Polishing of Additive Manufactured 316L Stainless Steel Synthesized by Selective Laser Melting
,”
Materials
,
12
(
6
), p.
991
. 10.3390/ma12060991
17.
DebRoy
,
T.
,
Wei
,
H. L.
,
Zuback
,
J. S.
,
Mukherjee
,
T.
,
Elmer
,
J. W.
,
Milewski
,
J. O.
,
Beese
,
A. M.
,
Wilson-Heid
,
A.
,
De
,
A.
, and
Zhang
,
W.
,
2018
, “
Additive Manufacturing of Metallic Components—Process, Structure and Properties
,”
Prog. Mater. Sci.
,
92
, pp.
112
224
. 10.1016/j.pmatsci.2017.10.001
18.
Strano
,
G.
,
Hao
,
L.
,
Everson
,
R. M.
, and
Evans
,
K. E.
,
2013
, “
Surface Roughness Analysis, Modelling and Prediction in Selective Laser Melting
,”
J. Mater. Process. Tech.
,
213
(
4
), pp.
589
597
. 10.1016/j.jmatprotec.2012.11.011
19.
Fox
,
J. C.
,
Moylan
,
S. P.
, and
Lane
,
B. M.
,
2016
, “
Effect of Process Parameters on the Surface Roughness of Overhanging Structures in Laser Powder Bed Fusion Additive Manufacturing
,”
Proc. CIRP
,
45
, pp.
131
134
. 10.1016/j.procir.2016.02.347
20.
Triantaphyllou
,
A.
,
Giusca
,
C. L.
,
Macaulay
,
G. D.
,
Roerig
,
F.
,
Hoebel
,
M.
,
Leach
,
R. K.
,
Tomita
,
B.
, and
Milne
,
K. A.
,
2015
, “
Surface Texture Measurement for Additive Manufacturing
,”
Surf. Topogr.: Metrol. Prop.
,
3
(
2
), p.
024002
. 10.1088/2051-672X/3/2/024002
21.
Umaras
,
E.
, and
Tsuzuki
,
M. S.
,
2017
, “
Additive Manufacturing-Considerations on Geometric Accuracy and Factors of Influence
,”
IFAC-PapersOnLine
,
50
(
1
), pp.
14940
14945
. 10.1016/j.ifacol.2017.08.2545
22.
Hällgren
,
S.
,
Pejryd
,
L.
, and
Ekengren
,
J.
,
2016
, “
3D Data Export for Additive Manufacturing-Improving Geometric Accuracy
,”
Proc. CIRP
,
50
, pp.
518
523
. 10.1016/j.procir.2016.05.046
23.
Chowdhury
,
S.
,
Mhapsekar
,
K.
, and
Anand
,
S.
,
2018
, “
Part Build Orientation Optimization and Neural Network-Based Geometry Compensation for Additive Manufacturing Process
,”
ASME. J. Manuf. Sci. Eng.
,
140
(
3
), p.
031009
. 10.1115/1.4038293
24.
Zhang
,
L.
,
Zhang
,
S.
,
Zhu
,
H.
,
Hu
,
Z.
,
Wang
,
G.
, and
Zeng
,
X.
,
2018
, “
Horizontal Dimensional Accuracy Prediction of Selective Laser Melting
,”
Mater. Des.
,
160
, pp.
9
20
. 10.1016/j.matdes.2018.08.059
25.
Kempen
,
K.
,
Thijs
,
L.
,
Van Humbeeck
,
J.
, and
Kruth
,
J. P.
,
2012
, “
Mechanical Properties of AlSi10Mg Produced by Selective Laser Melting
,”
Phys. Proc.
,
39
, pp.
439
446
. 10.1016/j.phpro.2012.10.059
26.
Hitzler
,
L.
,
Hirsch
,
J.
,
Merkel
,
M.
,
Hall
,
W.
, and
Öchsner
,
A.
,
2017
, “
Position Dependent Surface Quality in Selective Laser Melting
,”
Mater. Sci. Eng. Technol.
,
48
(
5
), pp.
327
334
. 10.1002/mawe.201600742
27.
Hitzler
,
L.
,
Janousch
,
C.
,
Schanz
,
J.
,
Merkel
,
M.
,
Heine
,
B.
,
Mack
,
F.
,
Hall
,
W.
, and
Öchsner
,
A.
,
2017
, “
Direction and Location Dependency of Selective Laser Melted AlSi10Mg Specimens
,”
J. Mater. Process. Technol.
,
243
, pp.
48
61
. 10.1016/j.jmatprotec.2016.11.029
28.
Snyder
,
J. C.
, and
Thole
,
K. A.
,
2020
, “
Understanding Laser Powder Bed Fusion Surface Roughness
,”
ASME. J. Manuf. Sci. Eng.
,
142
(
7
), p.
071003
. 10.1115/1.4046504
29.
Liu
,
B.
,
Li
,
B. Q.
,
Li
,
Z.
,
Bai
,
P.
,
Wang
,
Y.
, and
Kuai
,
Z.
,
2019
, “
Numerical Investigation on Heat Transfer of Multi-Laser Processing During Selective Laser Melting of AlSi10Mg
,”
Results Phys.
,
12
(
7
), pp.
454
459
. 10.1016/j.rinp.2018.11.075
30.
Zuo
,
P.
,
Chen
,
S.
,
Wei
,
M.
,
Liang
,
J.
,
Liu
,
C.
, and
Wang
,
M.
,
2019
, “
Thermal Behavior and Grain Evolution of 24CrNiMoY Alloy Steel Prepared by Pre-Laid Laser Cladding Technology
,”
Opt. Laser Technol.
,
119
, p.
105613
. 10.1016/j.optlastec.2019.105613
31.
Brandt
,
M.
,
2016
,
Laser Additive Manufacturing: Materials, Design, Technologies, and Applications
,
Woodhead Publishing
,
Cambridge
.
32.
Kleszczynski
,
S.
,
Ladewig
,
A.
,
Friedberger
,
K.
,
Zur Jacobsmühlen
,
J.
,
Merhof
,
D.
, and
Witt
,
G.
,
2015
, “
Position Dependency of Surface Roughness in Parts From Laser Beam Melting Systems
,”
26th International Solid Free Form Fabrication (SFF) Symposium
,
Austin, TX
, pp.
10
12
.
33.
Jamshidinia
,
M.
, and
Kovacevic
,
R.
,
2015
, “
The Influence of Heat Accumulation on the Surface Roughness in Powder-bed Additive Manufacturing
,”
Surf. Topogr.: Metrol. Prop.
,
3
(
1
), p.
014003
. 10.1088/2051-672X/3/1/014003
34.
Körner
,
C.
,
Bauereiß
,
A.
, and
Attar
,
E.
,
2013
, “
Fundamental Consolidation Mechanisms During Selective Beam Melting of Powders
,”
Modell. Simul. Mater. Sci. Eng.
,
21
(
8
), p.
085011
. 10.1088/0965-0393/21/8/085011
35.
Cherry
,
J. A.
,
Davies
,
H. M.
,
Mehmood
,
S.
,
Lavery
,
N. P.
,
Brown
,
S. G. R.
, and
Sienz
,
J.
,
2015
, “
Investigation Into the Effect of Process Parameters on Microstructural and Physical Properties of 316L Stainless Steel Parts by Selective Laser Melting
,”
Int. J. Adv. Manuf. Technol.
,
76
(
5–8
), pp.
869
879
. 10.1007/s00170-014-6297-2
36.
Mahamood
,
R. M.
,
Akinlabi
,
E. T.
,
Shukla
,
M.
, and
Pityana
,
S.
,
2013
, “
Characterizing the Effect of Laser Power Density on Microstructure, Microhardness, and Surface Finish of Laser Deposited Titanium Alloy
,”
ASME. J. Manuf. Sci. Eng.
,
135
(
6
), p.
064502
. 10.1115/1.4025737
37.
Yu
,
G.
,
Gu
,
D.
,
Dai
,
D.
,
Xia
,
M.
,
Ma
,
C.
, and
Shi
,
Q.
,
2016
, “
On the Role of Processing Parameters in Thermal Behavior, Surface Morphology and Accuracy During Laser 3D Printing of Aluminum Alloy
,”
J. Phys. D
,
49
(
13
), p.
135501
. 10.1088/0022-3727/49/13/135501
38.
Gusarov
,
A. V.
, and
Smurov
,
I.
,
2010
, “
Modeling the Interaction of Laser Radiation with Powder Bed at Selective Laser Melting
,”
Phys. Proc.
,
5
, pp.
381
394
. 10.1016/j.phpro.2010.08.065
39.
Gu
,
D. D.
, and
Shen
,
Y.
,
2009
, “
Balling Phenomena in Direct Laser Sintering of Stainless Steel Powder: Metallurgical Mechanisms and Control Methods
,”
Mater. Des.
,
30
(
8
), pp.
2903
2910
. 10.1016/j.matdes.2009.01.013
40.
Lee
,
Y. S.
, and
Zhang
,
W.
,
2015
, “
Mesoscopic Simulation of Heat Transfer and Fluid Flow in Laser Powder Bed Additive Manufacturing
,”
Proceedings of the Annual International Solid Freeform Fabrication Symposium
,
Austin, TX
, pp.
10
12
.
41.
Ansari
,
M. J.
,
Nguyen
,
D. S.
, and
Park
,
H. S.
,
2019
, “
Investigation of SLM Process in Terms of Temperature Distribution and Melting Pool Size: Modeling and Experimental Approaches
,”
Materials
,
12
(
8
), p.
1272
. 10.3390/ma12081272
42.
Zhang
,
B.
,
Dembinski
,
L.
, and
Coddet
,
C.
,
2013
, “
The Study of the Laser Parameters and Environment Variables Effect on Mechanical Properties of High Compact Parts Elaborated by Selective Laser Melting 316L Powder
,”
Mater. Sci. Eng. A
,
584
, pp.
21
31
. 10.1016/j.msea.2013.06.055
43.
Cheng
,
B.
,
Lydon
,
J.
,
Cooper
,
K.
,
Cole
,
V.
,
Northrop
,
P.
, and
Chou
,
K.
,
2017
, “
Melt Pool Dimension Measurement in Selective Laser Melting Using Thermal Imaging
,”
Solid Freeform Fabrication 2017: Proceedings of the 28th Annual International Solid Freeform Fabrication Symposium—An Additive Manufacturing Conference
,
Austin, TX
,
Aug. 7–9
, pp.
1252
1263
.
44.
Zhao
,
D.
, and
Guo
,
W.
,
2020
, “
Shape and Performance Controlled Advanced Design for Additive Manufacturing: A Review of Slicing and Path Planning
,”
ASME. J. Manuf. Sci. Eng.
,
142
(
1
), p.
010801
. 10.1115/1.4045055
45.
Wang
,
D.
,
Yang
,
Y.
,
Yi
,
Z.
, and
Su
,
X.
,
2013
, “
Research on the Fabricating Quality Optimization of the Overhanging Surface in SLM Process
,”
Int. J. Adv. Manuf. Tech.
,
65
(
9–12
), pp.
1471
1484
. 10.1007/s00170-012-4271-4
46.
Li
,
C.
,
Liu
,
Z. Y.
,
Fang
,
X. Y.
, and
Guo
,
Y. B.
,
2018
, “
On the Simulation Scalability of Predicting Residual Stress and Distortion in Selective Laser Melting
,”
ASME. J. Manuf. Sci. Eng.
,
140
(
4
), p.
041013
. 10.1115/1.4038893
47.
Liu
,
Y.
,
Yang
,
Y.
, and
Wang
,
D.
,
2016
, “
A Study on the Residual Stress During Selective Laser Melting (SLM) of Metallic Powder
,”
Int. J. Adv. Manuf. Tech.
,
87
(
1–4
), pp.
647
656
. 10.1007/s00170-016-8466-y
You do not currently have access to this content.