Porosity is an inherent attribute in selective laser melting (SLM) and profoundly degrades the build part quality and its performance. This study attempts to understand and characterize the keyhole pores formed during single-track scanning in SLM. First, 24 single tracks were generated using different line energy density (LED) levels, ranging from 0.1 J/mm to 0.98 J/mm, by varying the laser power and the scanning speed. The samples were then scanned by micro-computed tomography to measure keyhole pores and analyze the pore characteristics. The results show a general trend that the severity of the keyhole porosity increases with the increase of the LED with exceptions of certain patterns, implying important individual contributions from the parameters. Next, by keeping the LED constant in another set of experiments, different combinations of the power and the speed were tested to investigate the individual effect. Based on the results obtained, the laser power appears to have a greater effect than the scanning speed on both the pore number and the pore volume as well as the pore depth. For the same LED, the pore number and volume increase with increasing laser power until a certain critical level, beyond which, both the pore number and volume will decrease, if the power is further increased. For the LED of 0.32 J/mm, 0.4 J/mm, and 0.48 J/mm, the critical laser power that reverses the trend is about 132 W, 140 W, and 144 W, respectively.

References

1.
Kruth
,
J.-P.
,
Froyen
,
L.
,
Van Vaerenbergh
,
J.
,
Mercelis
,
P.
,
Rombouts
,
M.
, and
Lauwers
,
B.
,
2004
, “
Selective Laser Melting of Iron-Based Powder
,”
J. Mater. Process. Technol.
,
149
(
1
), pp.
616
622
.
2.
Aboulkhair
,
N. T.
,
Maskery
,
I.
,
Tuck
,
C.
,
Ashcroft
,
I.
, and
Everitt
,
N. M.
,
2016
, “
On the Formation of AlSi10Mg Single Tracks and Layers in Selective Laser Melting: Microstructure and Nano-Mechanical Properties
,”
J. Mater. Process. Technol.
,
230
(
2016
), pp.
88
98
.
3.
Brandl
,
E.
,
Heckenberger
,
U.
,
Holzinger
,
V.
, and
Buchbinder
,
D.
,
2012
, “
Additive Manufactured AlSi10Mg Samples Using Selective Laser Melting (SLM): Microstructure, High Cycle Fatigue, and Fracture Behavior
,”
Mater. Des.
,
34
(
2012
), pp.
159
169
.
4.
Amato
,
K.
,
Gaytan
,
S.
,
Murr
,
L.
,
Martinez
,
E.
,
Shindo
,
P.
,
Hernandez
,
J.
,
Collins
,
S.
, and
Medina
,
F.
,
2012
, “
Microstructures and Mechanical Behavior of Inconel 718 Fabricated by Selective Laser Melting
,”
Acta Mater.
,
60
(
5
), pp.
2229
2239
.
5.
Jia
,
Q.
, and
Gu
,
D.
,
2014
, “
Selective Laser Melting Additive Manufactured Inconel 718 Superalloy Parts: High-Temperature Oxidation Property and its Mechanisms
,”
Opt. Laser Technol.
,
62
(
2014
), pp.
161
171
.
6.
Rafi
,
H.
,
Karthik
,
N.
,
Gong
,
H.
,
Starr
,
T. L.
, and
Stucker
,
B. E.
,
2013
, “
Microstructures and Mechanical Properties of Ti6Al4 V Parts Fabricated by Selective Laser Melting and Electron Beam Melting
,”
J. Mater. Eng. Perform.
,
22
(
12
), pp.
3872
3883
.
7.
Song
,
B.
,
Dong
,
S.
,
Zhang
,
B.
,
Liao
,
H.
, and
Coddet
,
C.
,
2012
, “
Effects of Processing Parameters on Microstructure and Mechanical Property of Selective Laser Melted Ti6Al4 V
,”
Mater. Des.
,
35
(
2012
), pp.
120
125
.
8.
Guan
,
K.
,
Wang
,
Z.
,
Gao
,
M.
,
Li
,
X.
, and
Zeng
,
X.
,
2013
, “
Effects of Processing Parameters on Tensile Properties of Selective Laser Melted 304 Stainless Steel
,”
Mater. Des.
,
50
(
2013
), pp.
581
586
.
9.
Cherry
,
J.
,
Davies
,
H.
,
Mehmood
,
S.
,
Lavery
,
N.
,
Brown
,
S.
, and
Sienz
,
J.
,
2015
, “
Investigation Into the Effect of Process Parameters on Microstructural and Physical Properties of 316L Stainless Steel Parts by Selective Laser Melting
,”
Int. J. Adv. Manuf. Technol.
,,
76
(
5–8
), pp.
869
879
.
10.
Edwards
,
P.
, and
Ramulu
,
M.
,
2014
, “
Fatigue Performance Evaluation of Selective Laser Melted Ti-6Al-4 V
,”
Mater. Sci. Eng. A
,
598
(
2014
), pp.
327
337
.
11.
Vandenbroucke
,
B.
, and
Kruth
,
J.-P.
,
2007
, “
Selective Laser Melting of Biocompatible Metals for Rapid Manufacturing of Medical Parts
,”
Rapid Prototyping J.
,,
13
(
4
), pp.
196
203
.
12.
Murr
,
L.
,
Quinones
,
S.
,
Gaytan
,
S.
,
Lopez
,
M.
,
Rodela
,
A.
,
Martinez
,
E.
,
Hernandez
,
D.
,
Martinez
,
E.
,
Medina
,
F.
, and
Wicker
,
R.
,
2009
, “
Microstructure and Mechanical Behavior of Ti-6Al-4 V Produced by Rapid-Layer Manufacturing, for Biomedical Applications
,”
J. Mech. Behav. Biomed. Mater.
,,
2
(
1
), pp.
20
32
.
13.
Yadroitsev
,
I.
,
Krakhmalev
,
P.
, and
Yadroitsava
,
I.
,
2014
, “
Selective Laser Melting of Ti6Al4 V Alloy for Biomedical Applications: Temperature Monitoring and Microstructural Evolution
,”
J. Alloys Compd.
,
583
(
2014
), pp.
404
409
.
14.
Wycisk
,
E.
,
Emmelmann
,
C.
,
Siddique
,
S.
, and
Walther
,
F.
,
2013
, “
High Cycle Fatigue (HCF) [Q7]Performance of Ti-6Al-4 V Alloy Processed by Selective Laser Melting
,”
Proc. Adv. Mater. Res. Trans. Tech. Publ.
,
816–817
(
2013
), pp.
134
139
.
15.
Mercelis
,
P.
, and
Kruth
,
J.-P.
,
2006
, “
Residual Stresses in Selective Laser Sintering and Selective Laser Melting
,”
Rapid Prototyping J.
,
12
(
5
), pp.
254
265
.
16.
Cheng
,
B.
,
Shrestha
,
S.
, and
Chou
,
Y. K.
, “
Stress and Deformation Evaluations of Scanning Strategy Effect in Selective Laser Melting
,”
Proceedings of the ASME 2016 11th International Manufacturing Science and Engineering Conference
,
Blacksburg, VA
,
June 27–July 1, American Society of Mechanical Engineers, p. V003T008A009
.
17.
Kasperovich
,
G.
,
Haubrich
,
J.
,
Gussone
,
J.
, and
Requena
,
G.
,
2016
, “
Correlation Between Porosity and Processing Parameters in TiAl6V4 Produced by Selective Laser Melting
,”
Mater. Des.
,
105
(
2016
), pp.
160
170
.
18.
Leuders
,
S.
,
Thöne
,
M.
,
Riemer
,
A.
,
Niendorf
,
T.
,
Tröster
,
T.
,
Richard
,
H.
, and
Maier
,
H.
,
2013
, “
On the Mechanical Behaviour of Titanium Alloy TiAl6V4 Manufactured by Selective Laser Melting: Fatigue Resistance and Crack Growth Performance
,”
Int. J. Fatigue
,
48
(
2013
), pp.
300
307
.
19.
Gong
,
H.
,
Rafi
,
K.
,
Gu
,
H.
,
Starr
,
T.
, and
Stucker
,
B.
,
2014
, “
Analysis of Defect Generation in Ti-6Al-4 V Parts Made Using Powder Bed Fusion Additive Manufacturing Processes
,”
Add. Manuf.
,
1
(
2014
), pp.
87
98
.
20.
King
,
W. E.
,
Barth
,
H. D.
,
Castillo
,
V. M.
,
Gallegos
,
G. F.
,
Gibbs
,
J. W.
,
Hahn
,
D. E.
,
Kamath
,
C.
, and
Rubenchik
,
A. M.
,
2014
, “
Observation of Keyhole-Mode Laser Melting in Laser Powder-Bed Fusion Additive Manufacturing
,”
J. Mater. Process. Technol.
,
214
(
12
), pp.
2915
2925
.
21.
Ponnusamy
,
P.
,
Masood
,
S.
,
Ruan
,
D.
,
Palanisamy
,
S.
, and
Mohamed
,
O.
,
2017
, “
Statistical Analysis of Porosity of 17-4PH Alloy Processed by Selective Laser Melting
,”
Proceedings of the IOP Conference Series: Materials Science and Engineering
,
Beijing, China
,
June 23–25
, IOP Publishing, p.
012001
.
22.
Slotwinski
,
J. A.
,
Garboczi
,
E. J.
, and
Hebenstreit
,
K. M.
,
2014
, “
Porosity Measurements and Analysis for Metal Additive Manufacturing Process Control
,”
J. Res. Natl. Inst. Stand. Technol.
,
119
(
2014
), pp.
494
.
23.
Zhou
,
X.
,
Wang
,
D.
,
Liu
,
X.
,
Zhang
,
D.
,
Qu
,
S.
,
Ma
,
J.
,
London
,
G.
,
Shen
,
Z.
, and
Liu
,
W.
,
2015
, “
3D-Imaging of Selective Laser Melting Defects in a Co–Cr–Mo Alloy by Synchrotron Radiation Micro-CT
,”
Acta Mater.
,
98
(
2013
), pp.
1
16
.
24.
Ziółkowski
,
G.
,
Chlebus
,
E.
,
Szymczyk
,
P.
, and
Kurzac
,
J.
,
2014
, “
Application of X-Ray CT Method for Discontinuity and Porosity Detection in 316L Stainless Steel Parts Produced With SLM Technology
,”
Arch. Civ. Mech. Eng.
,
14
(
4
), pp.
608
614
.
25.
Siddique
,
S.
,
Imran
,
M.
,
Rauer
,
M.
,
Kaloudis
,
M.
,
Wycisk
,
E.
,
Emmelmann
,
C.
, and
Walther
,
F.
,
2015
, “
Computed Tomography for Characterization of Fatigue Performance of Selective Laser Melted Parts
,”
Mater. Des.
,
83
(
2015
), pp.
661
669
.
26.
Kim
,
T. B.
,
Yue
,
S.
,
Zhang
,
Z.
,
Jones
,
E.
,
Jones
,
J. R.
, and
Lee
,
P. D.
,
2014
, “
Additive Manufactured Porous Titanium Structures: Through-Process Quantification of Pore and Strut Networks
,”
J. Mater. Process. Technol.
,
214
(
11
), pp.
2706
2715
.
27.
Van Bael
,
S.
,
Kerckhofs
,
G.
,
Moesen
,
M.
,
Pyka
,
G.
,
Schrooten
,
J.
, and
Kruth
,
J.-P.
,
2011
, “
Micro-CT-Based Improvement of Geometrical and Mechanical Controllability of Selective Laser Melted Ti6Al4 V Porous Structures
,”
Mater. Sci. Eng. A
,
528
(
24
), pp.
7423
7431
.
28.
Matthews
,
M. J.
,
Guss
,
G.
,
Khairallah
,
S. A.
,
Rubenchik
,
A. M.
,
Depond
,
P. J.
, and
King
,
W. E.
,
2016
, “
Denudation of Metal Powder Layers in Laser Powder Bed Fusion Processes
,”
Acta Mater.
,
114
(
2016
), pp.
33
42
.
29.
Thijs
,
L.
,
Verhaeghe
,
F.
,
Craeghs
,
T.
,
Van Humbeeck
,
J.
, and
Kruth
,
J.-P.
,
2010
, “
A Study of the Microstructural Evolution During Selective Laser Melting of Ti-6Al-4 V
,”
Acta Mater.
,
58
(
9
), pp.
3303
3312
.
30.
Vrancken
,
B.
,
Thijs
,
L.
,
Kruth
,
J.-P.
, and
Van Humbeeck
,
J.
,
2012
, “
Heat Treatment of Ti6Al4 V Produced by Selective Laser Melting: Microstructure and Mechanical Properties
,”
J. Alloys Compd.
,
541
(
2012
), pp.
177
185
.
31.
Yadroitsev
,
I.
,
Gusarov
,
A.
,
Yadroitsava
,
I.
, and
Smurov
,
I.
,
2010
, “
Single Track Formation in Selective Laser Melting of Metal Powders
,”
J. Mater. Process. Technol.
,
210
(
12
), pp.
1624
1631
.
32.
Read
,
N.
,
Wang
,
W.
,
Essa
,
K.
, and
Attallah
,
M. M.
,
2015
, “
Selective Laser Melting of AlSi10Mg Alloy: Process Optimisation and Mechanical Properties Development
,”
Mater. Des.
,
65
(
2015
), pp.
417
424
.
33.
Bertoli
,
U. S.
,
Wolfer
,
A. J.
,
Matthews
,
M. J.
,
Delplanque
,
J.-P. R.
, and
Schoenung
,
J. M.
,
2017
, “
On the Limitations of Volumetric Energy Density as a Design Parameter for Selective Laser Melting
,”
Mater. Des.
,
113
(
2017
), pp.
331
340
.
34.
Gong
,
H.
,
Gu
,
H.
,
Zeng
,
K.
,
Dilip
,
J.
,
Pal
,
D.
,
Stucker
,
B.
,
Christiansen
,
D.
,
Beuth
,
J.
, and
Lewandowski
,
J. J.
,
2014
, “
Melt Pool Characterization for Selective Laser Melting of Ti-6Al-4 V Pre-Alloyed Powder
,”
Solid freeform fabrication
,
Austin TX
,
Aug 4
.
35.
Khairallah
,
S. A.
,
Anderson
,
A. T.
,
Rubenchik
,
A.
, and
King
,
W. E.
,
2016
, “
Laser Powder-Bed Fusion Additive Manufacturing: Physics of Complex Melt Flow and Formation Mechanisms of Pores, Spatter, and Denudation Zones
,”
Acta Mater.
,
108
(
2016
), pp.
36
45
.
36.
Akman
,
E.
,
Demir
,
A.
,
Canel
,
T.
, and
Sınmazçelik
,
T.
,
2009
, “
Laser Welding of Ti6Al4 V Titanium Alloys
,”
J. Mater. Process. Technol.
,
209
(
8
), pp.
3705
3713
.
37.
Benyounis
,
K.
,
Olabi
,
A.
, and
Hashmi
,
M.
,
2005
, “
Effect of Laser Welding Parameters on the Heat Input and Weld-Bead Profile
,”
J. Mater. Process. Technol.
,
164
(
2005
), pp.
978
985
.
38.
Pang
,
S.
,
Chen
,
W.
, and
Wang
,
W.
,
2014
, “
A Quantitative Model of Keyhole Instability Induced Porosity in Laser Welding of Titanium Alloy
,”
Metall. Mater. Trans. A
,
45
(
6
), pp.
2808
2818
.
39.
Cho
,
J.-H.
, and
Na
,
S.-J.
,
2006
, “
Implementation of Real-Time Multiple Reflection and Fresnel Absorption of Laser Beam in Keyhole
,”
J. Phys. D: Appl. Phys.
39
(
24
), pp.
5372
.
40.
Trapp
,
J.
,
Rubenchik
,
A. M.
,
Guss
,
G.
, and
Matthews
,
M. J.
,
2017
, “
In Situ Absorptivity Measurements of Metallic Powders During Laser Powder-Bed Fusion Additive Manufacturing
,”
Appl. Mater. Today
,
9
(
2017
), pp.
341
349
.
41.
Hann
,
D.
,
Iammi
,
J.
, and
Folkes
,
J.
,
2011
, “
A Simple Methodology for Predicting Laser-Weld Properties From Material and Laser Parameters
,”
J. Phys. D: Appl. Phys.
,
44
(
44
), p.
445401
.
42.
Kroos
,
J.
,
Gratzke
,
U.
, and
Simon
,
G.
,
1993
, “
Towards a Self-Consistent Model of the Keyhole in Penetration Laser Beam Welding
,”
J. Phys. D: Appl. Phys.
,
26
(
3
), p.
474
.
You do not currently have access to this content.