Promoting excellence in sustainable manufacturing has emerged as a strategic mission in academia and industry. In particular, universities must prepare the next generation of engineers to contribute to the task of sustaining and improving manufacturing by providing appropriate types of sustainability education and training. However, engineering curricula are challenged in delivering educational training for assessing technical solutions from the three domains that define sustainability: economic, environmental, and social. In the research presented here, an educational framework is developed with an aim to improve student understanding of sustainable product design (PD) and manufacturing. The framework is founded on the analyze, design, develop, implement, and evaluate (ADDIE) model for instructional design. The developed framework is demonstrated using an example of a sustainable PD activity. This instructional design case study illustrates how engineering students would be able to investigate the impacts of raw materials, unit manufacturing processes, manufacturing locations, and design changes on product sustainability performance by integrating PD information and manufacturing analysis methods during the PD phase.

References

1.
U.S. EIA
,
2018
, “
Annual Energy Outlook 2018
,” U.S. Energy Information Administration, Washington, DC, accessed Aug. 14, 2018, https://www.eia.gov/outlooks/aeo/
2.
Ramani
,
K.
,
Ramanujan
,
D.
,
Bernstein
,
W. Z.
,
Zhao
,
F.
,
Sutherland
,
J.
,
Handwerker
,
C.
,
Choi
,
J.-K.
,
Kim
,
H.
, and
Thurston
,
D.
,
2010
, “
Integrated Sustainable Life Cycle Design: A Review
,”
ASME J. Mech. Des.
,
132
(
9
), p.
091004
.
3.
Garretson
,
I. C.
,
Mani
,
M.
,
Leong
,
S.
,
Lyons
,
K. W.
, and
Haapala
,
K. R.
,
2016
, “
Terminology to Support Manufacturing Process Characterization and Assessment for Sustainable Production
,”
J. Cleaner Prod.
,
139
, pp.
986
1000
.
4.
Esmaeilian
,
B.
,
Behdad
,
S.
, and
Wang
,
B.
,
2016
, “
The Evolution and Future of Manufacturing: A Review
,”
J. Manuf. Syst.
,
39
, pp.
79
100
.
5.
Garetti
,
M.
, and
Taisch
,
M.
,
2012
, “
Sustainable Manufacturing: Trends and Research Challenges
,”
Prod. Plann. Control
,
23
(
2–3
), pp.
83
104
.
6.
Kremer
,
G. E.
,
Haapala
,
K.
,
Murat
,
A.
,
Chinnam
,
R. B.
,
Kim
,
K.
,
Monplaisir
,
L.
, and
Lei
,
T.
,
2016
, “
Directions for Instilling Economic and Environmental Sustainability Across Product Supply Chains
,”
J. Cleaner Prod.
,
112
(
3
), pp.
2066
2078
.
7.
Staniškis
,
J. K.
, and
Katiliūtė
,
E.
,
2016
, “
Complex Evaluation of Sustainability in Engineering Education: Case & Analysis
,”
J. Cleaner Prod.
,
120
, pp.
13
20
.
8.
Lönngren
,
J.
,
2017
, “
Wicked Problems in Engineering Education: Preparing Future Engineers to Work for Sustainability
,”
Doctoral thesis
, Chalmers University of Technology, Gothenburg, Sweden.http://publications.lib.chalmers.se/records/fulltext/250857/250857.pdf
9.
Watson
,
M. K.
,
Pelkey
,
J.
,
Noyes
,
C.
, and
Rodgers
,
M.
,
2016
, “
Assessing Impacts of a Learning-Cycle-Based Module on Students' Conceptual Sustainability Knowledge Using Concept Maps and Surveys
,”
J. Cleaner Prod.
,
133
, pp.
544
556
.
10.
Hawkins
,
N. C.
,
Patterson
,
R. W.
,
Mogge
,
J.
, and
Yosie
,
T. F.
,
2014
, “
Building a Sustainability Road Map for Engineering Education
,”
ACS Sustainable Chem. Eng.
,
2
(
3
), pp.
340
343
.
11.
Baumers
,
M.
,
Tuck
,
C.
,
Bourell
,
D. L.
,
Sreenivasan
,
R.
, and
Hague
,
R.
,
2011
, “
Sustainability of Additive Manufacturing: Measuring the Energy Consumption of the Laser Sintering Process
,”
Proc. Inst. Mech. Eng., Part B
,
225
(
12
), pp.
2228
2239
.
12.
Allen
,
D.
,
Allenby
,
B.
,
Bridges
,
M.
,
Crittenden
,
J.
,
Davidson
,
C.
,
Hendrickson
,
C.
,
Matthews
,
S.
,
Murphy
,
C.
, and
Pijawka
,
D.
,
2008
, “
Benchmarking Sustainable Engineering Education
,” Center for Sustainable Engineering, U.S. Environmental Protection Agency, Washington, DC, Report No. X3-83235101-0.
13.
Kumar
,
V.
,
Haapala
,
K. R.
,
Rivera
,
J. L.
,
Hutchins
,
M. J.
,
Endres
,
W. J.
,
Gershenson
,
J. K.
,
Michalek
,
D. J.
, and
Sutherland
,
J. W.
,
2005
, “
Infusing Sustainability Principles into Manufacturing/Mechanical Engineering Curricula
,”
J. Manuf. Syst.
,
24
(
3
), pp.
215
225
.
14.
Arkün
,
S.
, and
Akkoyunlu
,
B.
,
2008
, “
A Study on the Development Process of a Multimedia Learning Environment According to the ADDIE Model and Students' Opinions of the Multimedia Learning Environment
,”
Interact. Educ. Multimedia
,
17
, pp.
1
19
.http://revistes.ub.edu/index.php/IEM/article/view/11902
15.
Augestad
,
K. M.
,
Han
,
H.
,
Paige
,
J.
,
Ponsky
,
T.
,
Schlachta
,
C. M.
,
Dunkin
,
B.
, and
Mellinger
,
J.
,
2017
, “
Educational Implications for Surgical Telementoring: A Current Review with Recommendations for Future Practice, Policy, and Research
,”
Surg. Endosc.
,
31
(
10
), pp.
3836
3846
.
16.
Liu
,
Y.
, and
Chen
,
Y.
,
2017
, “
Application of Case Education Based on the ADDIE Model in Nurse Education
,”
Chin. J. Med. Educ. Res.
,
16
(
4
), pp.
418
423
.
17.
Adnan
,
N. H.
, and
Ritzhaupt
,
A. D.
,
2018
, “
Software Engineering Design Principles Applied to Instructional Design: What Can We Learn From Our Sister Discipline?
,”
TechTrends
,
62
(
1
), pp.
77
94
.
18.
Ihrig
,
L. M.
,
Lane
,
E.
,
Mahatmya
,
D.
, and
Assouline
,
S. G.
,
2017
, “
STEM Excellence and Leadership Program: Increasing the Level of STEM Challenge and Engagement for High-Achieving Students in Economically Disadvantaged Rural Communities
,”
J. Educ. Gifted
,
41
(
1
), pp.
24
42
.
19.
Conole
,
G.
, and
Oliver
,
M.
,
2006
,
Contemporary Perspectives in E-Learning Research: Themes, Methods and Impact on Practice
,
Routledge
, New York.
20.
Pappas
,
E.
,
Pierrakos
,
O.
, and
Nagel
,
R.
,
2013
, “
Using Bloom's Taxonomy to Teach Sustainability in Multiple Contexts
,”
J. Cleaner Prod.
,
48
(
Suppl. C
), pp.
54
64
.
21.
Bloom
,
B. S.
,
1956
,
Taxonomy of Educational Objectives: The Classification of Education Goals by a Committee of College and University Examiners
,
David McKay
,
Ann Arbor, MI
.
22.
Khan
,
M. T. H.
,
Raoufi
,
K.
,
Park
,
K.
,
Reza
,
T.
,
Psenka
,
C. E.
,
Jackson
,
K. L.
,
Haapala
,
K. R.
,
Kremer
,
G. E. O.
, and
Kim
,
K.-Y.
,
2017
, “
Development of Learning Modules for Sustainable Life Cycle Product Design: A Constructionist Approach
,”
ASEE Annual Conference & Exposition
, Columbus, OH, June 25–28, Paper No. 19011.https://www.asee.org/public/conferences/78/papers/19011/view
23.
Bull
,
G.
,
Haj-Hariri
,
H.
,
Atkins
,
R.
, and
Moran
,
P.
,
2015
, “
An Educational Framework for Digital Manufacturing in Schools
,”
3D Print. Addit. Manuf.
,
2
(
2
), pp.
42
49
.
24.
Ebner
,
M.
, and
Holzinger
,
A.
,
2002
, “
E-Learning in Civil Engineering: The Experience Applied to a Lecture Course in Structural Concrete
,”
J. Appl. Inf. Technol.
,
1
(1), pp. 1–9.
25.
Mizoguchi
,
R.
, and
Bourdeau
,
J.
,
2001
, “
Using Ontological Engineering to Overcome Common AI-ED Problems
,”
Int. J. Artif. Intell. Educ.
,
11
, pp. 107–121.https://pdfs.semanticscholar.org/e4f4/786aa7b094f33b000c88dc9e19b096b8d069.pdf
26.
Seels
,
B.
,
1995
,
Instructional Design Fundamentals: A Reconsideration
,
Educational Technology
,
Englewood Cliffs, NJ
.
27.
Grimaldi
,
D. A.
, and
Engel
,
M. S.
,
2007
, “
Why Descriptive Science Still Matters
,”
BioScience
,
57
(
8
), pp.
646
647
.
28.
Michael
,
J.
,
2006
, “
Where's the Evidence That Active Learning Works?
,”
Adv. Physiol. Educ.
,
30
(
4
), pp.
159
167
.
29.
Reiser
,
R. A.
, and
Dempsey
,
J. A.
,
2002
,
Trends and Issues in Instructional Design and Technology
, Pearson Education, Saddle River, NJ.
30.
Davis
,
A. L.
,
2013
, “
Using Instructional Design Principles to Develop Effective Information Literacy Instruction: The ADDIE Model
,”
Coll. Res. Libr.
,
74
(
4
), pp.
205
207
.
31.
Jolly
,
T. H.
,
2015
, “
An Introduction to the ADDIE Instructional Systems Design Model
,” Federal Government Distance Learning Association (FGDLA), accessed Dec. 6, 2018, http://www.fgdla.us/index.html
32.
Branson
,
R. K.
,
1977
, “
Interservice Procedures for Instructional Systems Development: Task V Final Report
,” Florida State University, Tallahassee, FL, Report No. ED164745.https://eric.ed.gov/?id=ED164745
33.
Kurt
,
S.
,
2017
, “
ADDIE Model: Instructional Design
,” Educational Technology, accessed Aug. 29, 2017, https://educationaltechnology.net/the-addie-model-instructional-design/
34.
Morrison
,
G. R.
,
Ross
,
S. M.
,
Kemp
,
J. E.
, and
Kalman
,
H.
,
2010
,
Designing Effective Instruction
,
Wiley
,
Hoboken, NJ
.
35.
Lucero
,
B. M.
, and
Adams
,
M. J.
,
2016
, “
Common Functionality Across Engineering Domains Through Transfer Functions and Bond Graphs
,”
ASME
Paper No. DETC2016-59769.
36.
Takai
,
S.
, and
Du
,
X.
,
2015
, “
Evaluations of Engineering Uncertainty Repository
,”
ASME
Paper No. IMECE2015-53555.
37.
Oman
,
S.
,
Gilchrist
,
B.
,
Rebhuhn
,
C.
,
Tumer
,
I. Y.
,
Nix
,
A.
, and
Stone
,
R.
,
2012
, “
Towards a Repository of Innovative Products to Enhance Engineering Creativity Education
,”
ASME
Paper No. DETC2012-70433.
38.
Gilchrist
,
B.
,
Van Bossuyt
,
D. L.
,
Tumer
,
I. Y.
,
Arlitt
,
R.
,
Stone
,
R. B.
, and
Haapala
,
K. R.
,
2013
, “
Functional Impact Comparison of Common and Innovative Products
,”
ASME
Paper No. DETC2013-12599.
39.
Haapala
,
K. R.
,
Poppa
,
K.
,
Stone
,
R. B.
, and
Tumer
,
I. Y.
,
2011
, “
Automating Environmental Impact Assessment During the Conceptual Phase of Product Design
,”
AAAI Spring Symposium: Artificial Intelligence and Sustainable Design
, Palo Alto, CA, Mar. 21–23, pp. 53–59https://pdfs.semanticscholar.org/dac6/9f8cce7895e85b9dce3c4647c9e61b279147.pdf.
40.
Ramanujan
,
D.
,
Benjamin
,
W.
,
Bernstein
,
W. Z.
,
Elmqvist
,
N.
, and
Ramani
,
K.
,
2013
, “
ShapeSift: Suggesting Sustainable Options in Design Reuse From Part Repositories
,”
ASME
Paper No. DETC2013-13048.
41.
Wisthoff
,
A.
,
Ferrero
,
V.
,
Huynh
,
T.
, and
DuPont
,
B.
,
2016
, “
Quantifying the Impact of Sustainable Product Design Decisions in the Early Design Phase Through Machine Learning
,”
ASME
Paper No. DETC2016-59586.
42.
Moutray
,
C.
,
2018
, “
Facts About Manufacturing—The Manufacturing Institute
,” Manufacturing Institute, Washington, DC, accessed Jan. 7, 2018, http://www.themanufacturinginstitute.org/Research/Facts-About-Manufacturing/Facts.aspx
43.
Mani
,
M.
,
Lyons
,
K. W.
, and
Gupta
,
S.
,
2014
, “
Sustainability Characterization for Additive Manufacturing
,”
J. Res. Natl. Inst. Stand. Technol.
,
119
, pp.
419
428
.
44.
Haapala
,
K. R.
,
Zhao
,
F.
,
Camelio
,
J.
,
Sutherland
,
J. W.
,
Skerlos
,
S. J.
,
Dornfeld
,
D. A.
,
Jawahir
,
I. S.
,
Clarens
,
A. F.
, and
Rickli
,
J. L.
,
2013
, “
A Review of Engineering Research in Sustainable Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
135
(
4
), p.
041013
.
45.
Mirkouei
,
A.
,
Bhinge
,
R.
,
McCoy
,
C.
,
Haapala
,
K.
, and
Dornfeld
,
D. A.
,
2016
, “
A Pedagogical Module Framework to Improve Scaffolded Active Learning in Manufacturing Engineering Education
,”
Procedia Manuf.
,
5
, pp.
1128
1142
.
46.
Shipp
,
S.
,
Gupta
,
N.
,
Lal
,
B.
,
Scott
,
J. A.
,
Weber
,
C. L.
,
Finnin
,
M. S.
,
Blake
,
M.
,
Newsome
,
S.
, and
Thomas
,
S.
,
2018
, “
Emerging Global Trends in Advanced Manufacturing
,” Institute for Defense Analyses, Alexandria, VA, Report No.
IDA-P-4603
.https://apps.dtic.mil/docs/citations/ADA558616
47.
Mani
,
M.
,
Larborn
,
J.
,
Johansson
,
B.
,
Lyons
,
K. W.
, and
Morris
,
K. C.
,
2016
, “
Standard Representations for Sustainability Characterization of Industrial Processes
,”
ASME J. Manuf. Sci. Eng.
,
138
(
10
), p.
101008
.
48.
Todd
,
R. H.
,
Alting
,
L.
, and
Allen
,
D. K.
,
1994
,
Fundamental Principles of Manufacturing Processes
, 1st ed.,
Industrial Press
,
New York
.
49.
Kellens
,
K.
,
Dewulf
,
W.
,
Overcash
,
M.
,
Hauschild
,
M. Z.
, and
Duflou
,
J. R.
,
2012
, “
Methodology for Systematic Analysis and Improvement of Manufacturing Unit Process Life Cycle Inventory (UPLCI) CO2PE! Initiative (Cooperative Effort on Process Emissions in Manufacturing)—Part 1: Methodology Description
,”
Int. J. Life Cycle Assess.
,
17
(
1
), pp.
69
78
.
50.
Kellens
,
K.
,
Dewulf
,
W.
,
Overcash
,
M.
,
Hauschild
,
M. Z.
, and
Duflou
,
J. R.
,
2012
, “
Methodology for Systematic Analysis and Improvement of Manufacturing Unit Process Life Cycle Inventory (UPLCI) CO2PE! Initiative (Cooperative Effort on Process Emissions in Manufacturing)—Part 2: Case Studies
,”
Int. J. Life Cycle Assess.
,
17
(
2
), pp.
242
251
.
51.
Haapala
,
K.
,
Khadke
,
K.
, and
Sutherland
,
J.
,
2004
, “
Predicting Manufacturing Waste and Energy for Sustainable Product Development Via WE-Fab Software
,”
Global Conference on Sustainable Product Development and Life Cycle
, Berlin, Germany, Sept. 29–Oct. 1, pp.
243
250
.
52.
Alsaffar
,
A. J.
,
Raoufi
,
K.
,
Kim
,
K.-Y.
,
Kremer
,
G. E. O.
, and
Haapala
,
K. R.
,
2016
, “
Simultaneous Consideration of Unit Manufacturing Processes and Supply Chain Activities for Reduction of Product Environmental and Social Impacts
,”
ASME J. Manuf. Sci. Eng.
,
138
(
10
), p.
101009
.
53.
Eastwood
,
M. D.
, and
Haapala
,
K. R.
,
2015
, “
A Unit Process Model Based Methodology to Assist Product Sustainability Assessment During Design for Manufacturing
,”
J. Cleaner Prod.
,
108
, pp.
54
64
.
54.
Diaz
,
N.
,
Redelsheimer
,
E.
, and
Dornfeld
,
D.
,
2011
, “
Energy Consumption Characterization and Reduction Strategies for Milling Machine Tool Use
,”
Glocalized Solutions for Sustainability in Manufacturing
,
J.
Hesselbach
and
C.
Herrmann
, eds.,
Springer
,
Berlin
, pp.
263
267
.
55.
Rajemi
,
M. F.
,
Mativenga
,
P. T.
, and
Aramcharoen
,
A.
,
2010
, “
Sustainable Machining: Selection of Optimum Turning Conditions Based on Minimum Energy Considerations
,”
J. Cleaner Prod.
,
18
(
10–11
), pp.
1059
1065
.
56.
E60.13 Subcommittee,
2016
, “
Standard Guide for Characterizing Environmental Aspects of Manufacturing Processes
,”
ASTM International
,
Conshohocken, PA
, Standard No. ASTM E3012-16.
57.
Madan
,
J.
,
Mani
,
M.
,
Lee
,
J. H.
, and
Lyons
,
K. W.
,
2015
, “
Energy Performance Evaluation and Improvement of Unit-Manufacturing Processes: Injection Molding Case Study
,”
J. Cleaner Prod.
,
105
, pp.
157
170
.
58.
Bernstein
,
W. Z.
,
Mani
,
M.
,
Lyons
,
K. W.
,
Morris
,
K. C.
, and
Johansson
,
B.
,
2016
, “
An Open Web-Based Repository for Capturing Manufacturing Process Information
,”
ASME
Paper No. DETC2016-59265.
59.
Brodsky
,
A.
,
Krishnamoorthy
,
M.
,
Bernstein
,
W. Z.
, and
Nachawati
,
M. O.
,
2016
, “
A System and Architecture for Reusable Abstractions of Manufacturing Processes
,”
IEEE International Conference on Big Data
(
Big Data
), Washington, DC, Dec. 5–8, pp.
2004
2013
.
60.
Psenka
,
C. E.
,
Kim
,
K.-Y.
,
Kremer
,
O.
,
Gul
,
E.
,
Haapala
,
K. R.
, and
Jackson
,
K. L.
,
2017
, “
Translating Constructionist Learning to Engineering Design Education
,”
J. Integr. Design Process Sci.
,
21
(
2
), pp.
3
20
.
61.
Bergeå
,
O.
,
Karlsson
,
R.
,
Hedlund-Åström
,
A.
,
Jacobsson
,
P.
, and
Luttropp
,
C.
,
2006
, “
Education for Sustainability as a Transformative Learning Process: A Pedagogical Experiment in EcoDesign Doctoral Education
,”
J. Cleaner Prod.
,
14
(
15–16
), pp.
1431
1442
.
62.
Powers
,
L. M.
, and
Summers
,
J. D.
,
2009
, “
Integrating Graduate Design Coaches in Undergraduate Design Project Teams
,”
Int. J. Mech. Eng. Educ.
,
37
(
1
), p.
3
.
63.
Bremer-Bremer
,
M. H.
,
González-Mendívil
,
E.
, and
Mercado-Field
,
E. R.
,
2010
, “
Teaching Creativity and Innovation Using Sustainability as Driving Force International
,”
J. Eng. Educ.
,
27
, pp.
430
437
.
64.
Schäfer
,
A. I.
, and
Richards
,
B. S.
,
2007
, “
From Concept to Commercialisation: Student Learning in a Sustainable Engineering Innovation Project
,”
Eur. J. Eng. Educ.
,
32
(
2
), pp.
143
165
.
65.
Raoufi
,
K.
,
Haapala
,
K. R.
,
Jackson
,
K. L.
,
Kim
,
K.-Y.
,
Kremer
,
G. E. O.
, and
Psenka
,
C. E.
,
2017
, “
Enabling Non-Expert Sustainable Manufacturing Process and Supply Chain Analysis During the Early Product Design Phase
,”
Procedia Manuf.
,
10
, pp.
1097
1108
.
66.
Barth
,
M.
, and
Rieckmann
,
M.
,
2012
, “
Academic Staff Development as a Catalyst for Curriculum Change Towards Education for Sustainable Development: An Output Perspective
,”
J. Cleaner Prod.
,
26
, pp.
28
36
.
67.
Aktas
,
C. B.
,
Whelan
,
R.
,
Stoffer
,
H.
,
Todd
,
E.
, and
Kern
,
C. L.
,
2015
, “
Developing a University-Wide Course on Sustainability: A Critical Evaluation of Planning and Implementation
,”
J. Cleaner Prod.
,
106
, pp.
216
221
.
68.
Lozano
,
F. J.
, and
Lozano
,
R.
,
2014
, “
Developing the Curriculum for a New Bachelor's Degree in Engineering for Sustainable Development
,”
J. Cleaner Prod.
,
64
, pp.
136
146
.
69.
Boks
,
C.
, and
Diehl
,
J. C.
,
2006
, “
Integration of Sustainability in Regular Courses: Experiences in Industrial Design Engineering
,”
J. Cleaner Prod.
,
14
(
9–11
), pp.
932
939
.
70.
von Blottnitz
,
H.
,
Case
,
J. M.
, and
Fraser
,
D. M.
,
2015
, “
Sustainable Development at the Core of Undergraduate Engineering Curriculum Reform: A New Introductory Course in Chemical Engineering
,”
J. Cleaner Prod.
,
106
, pp.
300
307
.
71.
Bernstein
,
W. Z.
,
Ramanujan
,
D.
,
Zhao
,
F.
,
Ramani
,
K.
, and
Cox
,
M. F.
,
2012
, “
Teaching Design for Environment Through Critique Within a Project-Based Product Design Course
,”
Int. J. Eng. Educ.
,
28
(
4
), pp. 1–12.https://engineering.purdue.edu/cdesign/wp/wp-content/uploads/2012/05/ijee2602ns.pdf
72.
Ramanujan
,
D.
,
Zhou
,
N.
, and
Ramani
,
K.
,
2019
, “
Integrating Environmental Sustainability in Undergraduate Mechanical Engineering Courses Using Guided Discovery Instruction
,”
J. Cleaner Prod.
,
207
, pp.
190
203
.
73.
Lambrechts
,
W.
,
Mulà
,
I.
,
Ceulemans
,
K.
,
Molderez
,
I.
, and
Gaeremynck
,
V.
,
2013
, “
The Integration of Competences for Sustainable Development in Higher Education: An Analysis of Bachelor Programs in Management
,”
J. Cleaner Prod.
,
48
, pp.
65
73
.
74.
Raoufi
,
K.
,
Haapala
,
K. R.
,
Kremer
,
G. E. O.
,
Kim
,
K.-Y.
,
Psenka
,
C. E.
, and
Jackson
,
K. L.
,
2017
, “
Enabling Cyber-Based Learning of Product Sustainability Assessment Using Unit Manufacturing Process Analysis
,”
ASME
Paper No. DETC2017-68249.
75.
Lozano
,
R.
,
Ceulemans
,
K.
, and
Scarff Seatter
,
C.
,
2015
, “
Teaching Organisational Change Management for Sustainability: Designing and Delivering a Course at the University of Leeds to Better Prepare Future Sustainability Change Agents
,”
J. Cleaner Prod.
,
106
, pp.
205
215
.
76.
McLaughlan
,
R. G.
,
2007
, “
Instructional Strategies to Educate for Sustainability in Technology Assessment
,”
Int. J. Eng. Educ.
,
23
, pp.
201
208
.https://opus.lib.uts.edu.au/bitstream/10453/6158/1/2006014726%20CLEANED.pdf
77.
Holm
,
T.
,
Vuorisalo
,
T.
, and
Sammalisto
,
K.
,
2015
, “
Integrated Management Systems for Enhancing Education for Sustainable Development in Universities: A Memetic Approach
,”
J. Cleaner Prod.
,
106
, pp.
155
163
.
78.
Watson
,
M. K.
, and
Barrella
,
E.
,
2017
, “
Using Concept Maps to Explore the Impacts of a Learning-Cycle-Based Sustainability Module Implemented in Two Institutional Contexts
,”
J. Prof. Issues Eng. Educ. Pract.
,
143
(
2
), p. D4016001.
79.
McPherson
,
S.
,
Anid
,
N. M.
,
Ashton
,
W. S.
,
Hurtado-Martín
,
M.
,
Khalili
,
N.
, and
Panero
,
M.
,
2016
, “
Pathways to Cleaner Production in the Americas II: Application of a Competency Model to Experiential Learning for Sustainability Education
,”
J. Cleaner Prod.
,
135
, pp.
907
918
.
80.
Margallo
,
M.
,
Dominguez-Ramos
,
A.
, and
Aldaco
,
A.
,
2018
, “
Incorporating Life Cycle Assessment and Ecodesign Tools for Green Chemical Engineering: A Case Study of Competences and Learning Outcomes Assessment
,”
Educ. Chem. Eng.
(in press).
81.
Segalàs
,
J.
,
Ferrer-Balas
,
D.
, and
Mulder
,
K. F.
,
2010
, “
What Do Engineering Students Learn in Sustainability Courses? The Effect of the Pedagogical Approach
,”
J. Cleaner Prod.
,
18
(
3
), pp.
275
284
.
82.
Carew
,
A. L.
, and
Mitchell
,
C. A.
,
2008
, “
Teaching Sustainability as a Contested Concept: Capitalizing on Variation in Engineering Educators' Conceptions of Environmental, Social and Economic Sustainability
,”
J. Cleaner Prod.
,
16
(
1
), pp.
105
115
.
83.
Granta Design
,
2017
, “
CES EduPack 2015: Eco Audit
,” Granta Design, Cambridge, UK, accessed May 9, 2017, http://www.grantadesign.com/products/ecoaudit/
84.
Dassault Systèmes
,
2013
, “
SolidWorks Sustainability
,” Dassault Systèmes, Waltham, MA, accessed May 9, 2017, http://www.solidworks.com/sustainability/
85.
Sustainable Minds,
2013
, “
Sustainable Minds
,” Cambridge, MA, accessed Dec. 20, 2017, http://www.sustainableminds.com/
86.
GreenDelta
,
2013
, “
OpenLCA
,” GreenDelta, Berlin, accessed Dec. 31, 2017, http://www.openlca.org/
87.
Marinus Meursing
,
2017
, “
IDEMAT
,” Oegstgeest, The Netherlands, accessed May 7, 2017, http://idematapp.com
88.
PRé Consultants
,
2013
, “
SimaPro
,” Amersfoort, The Netherlands, accessed May 9, 2017, https://www.pre-sustainability.com/simapro
89.
Thinkstep
,
2013
, “
GaBi Software
,” Leinfelden-Echterdingen, Germany, accessed May 9, 2017, http://www.gabi-software.com/america/index/
90.
Rossi
,
M.
,
Germani
,
M.
, and
Zamagni
,
A.
,
2016
, “
Review of Ecodesign Methods and Tools. Barriers and Strategies for an Effective Implementation in Industrial Companies
,”
J. Cleaner Prod.
,
129
(
Suppl. C
), pp.
361
373
.
91.
Oman
,
S. K.
,
Tumer
,
I. Y.
,
Wood
,
K.
, and
Seepersad
,
C.
,
2013
, “
A Comparison of Creativity and Innovation Metrics and Sample Validation Through In-Class Design Projects
,”
Res. Eng. Des.
,
24
(
1
), pp.
65
92
.
92.
Bohm
,
M. R.
,
Haapala
,
K. R.
,
Poppa
,
K.
,
Stone
,
R. B.
, and
Tumer
,
I. Y.
,
2010
, “
Integrating Life Cycle Assessment into the Conceptual Phase of Design Using a Design Repository
,”
ASME J. Mech. Des.
,
132
(
9
), p.
091005
.
93.
Ramanujan
,
D.
,
Bernstein
,
W. Z.
,
Benjamin
,
W.
,
Ramani
,
K.
,
Elmqvist
,
N.
,
Kulkarni
,
D.
, and
Tew
,
J.
,
2015
, “
A Framework for Visualization-Driven Eco-Conscious Design Exploration
,”
ASME J. Comput. Inf. Sci. Eng.
,
15
(
4
), p.
041010
.
94.
Ramanujan
,
D.
,
Bernstein
,
W. Z.
,
Kulkarni
,
D.
,
Tew
,
J.
, and
Ramani
,
K.
,
2016
, “
shapeSIFT: Evaluating InfoVis Tools for Eco-Conscious Design
,”
ASME
Paper No. DETC2016-59953.
95.
Gilchrist
,
B. P.
,
Tumer
,
I. Y.
,
Stone
,
R. B.
,
Gao
,
Q.
, and
Haapala
,
K. R.
,
2012
, “
Comparison of Environmental Impacts of Innovative and Common Products
,”
ASME
Paper No. DETC2012-70559.
96.
Arlitt
,
R.
,
Bossuyt
,
D. L. V.
,
Stone
,
R. B.
, and
Tumer
,
I. Y.
,
2017
, “
The Function-Based Design for Sustainability Method
,”
ASME J. Mech. Des.
,
139
(
4
), p.
041102
.
97.
Raoufi
,
K.
,
Park
,
K.
,
Hasan Khan
,
M. T.
,
Haapala
,
K. R.
,
Psenka
,
C. E.
,
Jackson
,
K. L.
,
Kremer
,
G. E. O.
, and
Kim
,
K.-Y.
,
2019
, “
A Cyberlearning Platform for Enhancing Undergraduate Engineering Education in Sustainable Product Design
,”
J. Cleaner Prod.
,
211
, pp. 730–741.
98.
Reuter
,
M. A.
,
van Schaik
,
A.
, and
Gediga
,
J.
,
2015
, “
Simulation-Based Design for Resource Efficiency of Metal Production and Recycling Systems: Cases—Copper Production and Recycling, E-Waste (LED Lamps) and Nickel Pig Iron
,”
Int. J. Life Cycle Assess.
,
20
(
5
), pp.
671
693
.
99.
da Silva
,
C. E. S.
,
Salgado
,
E. G.
,
Mello
,
C. H. P.
,
da
,
E.
,
Oliveira
,
S.
, and
Leal
,
F.
,
2014
, “
Integration of Computer Simulation in Design for Manufacturing and Assembly
,”
Int. J. Prod. Res.
,
52
(
10
), pp.
2851
2866
.
100.
Favi
,
C.
,
Germani
,
M.
, and
Mandolini
,
M.
,
2018
, “
Development of Complex Products and Production Strategies Using a Multi-Objective Conceptual Design Approach
,”
Int. J. Adv. Manuf. Technol.
,
95
(
1–4
), pp.
1281
1291
.
101.
Wastling
,
T.
,
Charnley
,
F.
,
Moreno
,
M.
,
Wastling
,
T.
,
Charnley
,
F.
, and
Moreno
,
M.
,
2018
, “
Design for Circular Behaviour: Considering Users in a Circular Economy
,”
Sustainability
,
10
(
6
), p.
1743
.
102.
Sanyé‐Mengual
,
E.
,
Pérez-López
,
P.
,
Gonzílez-García
,
S.
,
Lozano
,
R. G.
,
Feijoo
,
G.
,
Moreira
,
M. T.
,
Gabarrell
,
X.
, and
Rieradevall
,
J.
,
2014
, “
Eco-Designing the Use Phase of Products in Sustainable Manufacturing
,”
J. Ind. Ecol.
,
18
(
4
), pp.
545
557
.
103.
Kim
,
K.-Y.
,
Haapala
,
K. R.
,
Kremer
,
G. E. O.
, and
Barbour
,
M. K.
,
2012
, “
Cyber Collaboratory-Based Sustainable Design Education: A Pedagogical Framework
,”
J. Comput. Sci. Educ.
,
3
(
2
), pp.
2
10
.
104.
Werner Dankwort
,
C.
,
Weidlich
,
R.
,
Guenther
,
B.
, and
Blaurock
,
J. E.
,
2004
, “
Engineers' CAx Education—It's Not Only CAD
,”
Comput.-Aided Des.
,
36
(
14
), pp.
1439
1450
.
105.
Thota
,
R.
, and
Dwivedi
,
S.
,
2006
, “
Implementation of Product Realization Concepts in Design and Manufacturing Courses
,”
Annual Conference & Exposition
, Chicago, IL, June 18–21, pp.
1
19
.
106.
Gibson
,
R. B.
,
2006
, “
Sustainability Assessment: Basic Components of a Practical Approach
,”
Impact Assess. Project Appraisal
,
24
(
3
), pp.
170
182
.
107.
Dewulf
,
K.
,
2013
, “
Sustainable Product Innovation: The Importance of the Front-End Stage in the Innovation Process
,”
Advances in Industrial Design Engineering
, IntechOpen, Rijeka, Croatia, pp. 139–166.
108.
Lubin
,
D. A.
, and
Esty
,
D. C.
,
2010
, “
The Sustainability Imperative
,”
Harvard Bus. Rev.
,
88
(
5
), pp.
42
50
.https://hbr.org/2010/05/the-sustainability-imperative/ar/pr
109.
Zwickle
,
A.
,
Koontz
,
T. M.
,
Slagle
,
K. M.
, and
Bruskotter
,
J. T.
,
2014
, “
Assessing Sustainability Knowledge of a Student Population: Developing a Tool to Measure Knowledge in the Environmental, Economic and Social Domains
,”
Int. J. Sustainability Higher Educ.
,
15
(
4
), pp.
375
389
.
110.
Rodríguez
,
C. A.
,
de Ciurana
,
J.
, and
Elías
,
A.
,
2005
, “
Industry and University Cooperation to Enhance Manufacturing Education
,”
J. Manuf. Syst.
,
24
(
3
), pp.
277
287
.
111.
Ullman
,
D.
,
2003
,
The Mechanical Design Process
, 2nd and 3rd ed.,
McGraw-Hill
,
New York
.
112.
Newton
,
R.
,
1999
, “
Pre and Post Testing
,” Evaluation Cookbook, Edinburgh, UK, accessed Nov. 24, 2016, http://www.icbl.hw.ac.uk/ltdi/cookbook/info_pre_and_post/index.html#endhead
113.
Delucchi
,
M.
,
2014
, “
Measuring Student Learning in Social Statistics a Pretest-Posttest Study of Knowledge Gain
,”
Teach. Sociol.
,
42
(
3
), pp.
231
239
.
114.
Mani
,
M.
,
Madan
,
J.
,
Lee
,
J. H.
,
Lyons
,
K. W.
, and
Gupta
,
S. K.
,
2014
, “
Sustainability Characterization for Manufacturing Processes
,”
Int. J. Prod. Res.
,
52
(
20
), pp.
1
18
.
115.
Pandey
,
P. M.
,
Venkata Reddy
,
N.
, and
Dhande
,
S. G.
,
2003
, “
Improvement of Surface Finish by Staircase Machining in Fused Deposition Modeling
,”
J. Mater. Process. Technol.
,
132
(
1–3
), pp.
323
331
.
116.
Chen
,
D.
,
Heyer
,
S.
,
Ibbotson
,
S.
,
Salonitis
,
K.
,
Steingrímsson
,
J. G.
, and
Thiede
,
S.
,
2015
, “
Direct Digital Manufacturing: Definition, Evolution, and Sustainability Implications
,”
J. Cleaner Prod.
,
107
, pp.
615
625
.
117.
Hutchins
,
M. J.
,
Gierke
,
J. S.
, and
Sutherland
,
J. W.
,
2009
, “
Decision Making for Social Sustainability: A Life-Cycle Assessment Approach
,”
IEEE
International Symposium on Technology and Society, Tempe, AZ, May 18–20, pp.
1
5
.
118.
Smith
,
P. L.
, and
Ragan
,
T. J.
,
1999
,
Instructional Design
,
Wiley
,
Hoboken, NJ
.
119.
Allen
,
M.
,
2012
,
Leaving ADDIE for SAM: An Agile Model for Developing the Best Learning Experiences
,
American Society for Training and Development
,
Alexandria, VA
.
You do not currently have access to this content.