The manufacturing of low-density paper such as tissue and towel typically involves a key operation called creping. In this process, the wet web is continuously pressed onto the hot surface of a rotating cylinder sprayed with adhesive chemicals, dried in place, and then scraped off by a doctor blade. The scraping process produces periodic microfolds in the web, which enhance the bulk, softness, and absorbency of the final tissue products. Various parameters affect the creping process and finding the optimal combination is currently limited to costly full-scale experiments. In this paper, we apply a one-dimensional (1D) particle dynamics model to systematically study creping. The web is modeled as a series of discrete particles connected by viscoelastic elements. A mixed-mode discrete cohesive zone model (CZM) is embedded to describe the failure of the adhesive layer. Self-contact of the web is incorporated in the model using a penalty method. Our simulation results delineate three typical stages during the formation of a microfold: interfacial delamination, web buckling, and post-buckling deformation. The effects of key control parameters on creping are then studied. The creping angle and the web thickness are found to have the highest impact on creping. An analytical solution for the maximum creping force applied by the blade is derived and is found to be consistent with the simulation. The proposed model is shown to be able to capture the mechanism of crepe formation in the creping process and may provide useful insights into the manufacturing of tissue paper.

References

1.
Oliver
,
J. F.
,
1980
, “
Dry-Creping of Tissue Paper-a Review of Basic Factors
,”
Tappi
,
63
(
12
), pp.
91
95
.
2.
Raunio
,
J. P.
, and
Ritala
,
R.
,
2012
, “
Simulation of Creping Pattern in Tissue Paper
,”
Nord. Pulp Pap. Res. J.
,
27
(
2
), p.
375
.
3.
Patterson
,
T.
,
2013
, “
Evaluating and Enhancing Tissue Softness
,”
Tappi Papercon Conference
, Atlanta, GA, Apr. 28–May 1.
4.
McConnel
,
W.
,
2004
,
The Science of Creping
,
Tissue World Americas
,
Miami Beach, FL
.
5.
Hollmark
,
H.
,
1972
, “
Study of the Creping Process on an Experimental Paper Machine
,” STFI-meddelande, Serie B, p.
144
.
6.
Ramasubramanian
,
M. K.
, and
Shmagin
,
D. L.
,
2000
, “
An Experimental Investigation of the Creping Process in Low-Density Paper Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
122
(
3
), pp.
576
581
.
7.
Ho
,
J.
,
Hutton
,
B.
,
Proctor
,
J.
, and
Batchelor
,
W.
,
2007
, “
Development of a Tissue Creping Test Rig
,”
Chemeca
, Melbourne, Australia, Sept. 23–26, pp.
1334
1340
.
8.
Boudreau
,
J.
, and
Barbier
,
C.
,
2014
, “
Laboratory Creping Equipment
,”
J. Adhes. Sci. Technol.
,
28
(
6
), pp.
561
572
.
9.
Hamalainen
,
P.
,
Hallback
,
N.
, and
Barbier
,
C.
,
2016
, “
Development and Evaluation of a High-Speed Creping Simulator for Tissue
,”
Nord. Pulp Pap. Res. J.
,
31
(
3
), pp.
448
458
.
10.
Pan
,
K.
,
Phani
,
A. S.
, and
Green
,
S.
,
2017
, “
Mechanics of Creping Process in Tissue Making: Modeling and Experiments
,”
Tappi Papercon Conference
, Minneapolis, MN, Apr. 23–26.
11.
Ramasubramanian
,
M. K.
,
Sun
,
Z. H.
, and
Chen
,
G.
,
2011
, “
A Mechanics of Materials Model for the Creping Process
,”
ASME J. Manuf. Sci. Eng.
,
133
(
5
), p.
051011
.
12.
Gupta
,
S. S.
,
2013
, “
Study of Delamination and Buckling of Paper During the Creping Process Using Finite Element Method—A Cohesive Element Approach
,”
Ph.D. thesis
, North Carolina State University, Raleigh, NC.
13.
Hutchinson
,
J. W.
, and
Suo
,
Z.
,
1992
, “
Mixed Mode Cracking in Layered Materials
,”
Adv. Appl. Mech.
,
29
, pp.
63
191
.
14.
Jabbar
,
K. A.
, and
Pagilla
,
P. R.
,
2017
, “
Modeling and Analysis of Web Tension Dynamics Considering Thermal and Viscoelastic Effects in Roll-to-Roll Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
140
(5), p. 051005.
15.
Bergou
,
M.
,
Wardetzky
,
M.
,
Robinson
,
S.
,
Audoly
,
B.
, and
Grinspun
,
E.
,
2008
, “
Discrete Elastic Rods
,”
ACM Trans. Graph.
,
27
(
3
), p.
63
.
16.
Bergou
,
M.
,
Audoly
,
B.
,
Vouga
,
E.
,
Wardetzky
,
M.
, and
Grinspun
,
E.
,
2010
, “
Discrete Viscous Threads
,”
ACM Trans. Graph.
,
29
(
4
), p.
116
.
17.
Krenk
,
S.
,
2009
,
Non-Linear Modeling and Analysis of Solids and Structures
,
Cambridge University Press
,
Cambridge, UK
.
18.
Persson
,
J.
, and
Isaksson
,
P.
,
2013
, “
A Particle‐Based Method for Mechanical Analyses of Planar Fiber‐Based Materials
,”
Int. J. Numer. Meth. Eng.
,
93
(
11
), pp.
1216
1234
.
19.
Persson
,
J.
, and
Isaksson
,
P.
,
2014
, “
A Mechanical Particle Model for Analyzing Rapid Deformations and Fracture in 3D Fiber Materials With Ability to Handle Length Effects
,”
Int. J. Solids Struct.
,
51
(
11–12
), pp.
2244
2251
.
20.
Pan
,
K.
,
Phani
,
A. S.
, and
Green
,
S.
,
2016
, “
Particle Dynamics Modeling of Buckle-Delamination of Thin Film Materials
,”
24th International Congress of Theoretical and Applied Mechanics
, Montreal, QC, Canada, Aug. 21–26, pp.
2092
2093
.
21.
Edvardsson
,
S.
, and
Uesaka
,
T.
,
2009
, “
System Dynamics of the Open-Draw With Web Adhesion: Particle Approach
,”
ASME J. Appl. Mech.
,
77
(
2
), p.
021009
.
22.
Etzmuss
,
O.
,
Gross
,
J.
, and
Strasser
,
W.
,
2003
, “
Deriving a Particle System From Continuum Mechanics for the Animation of Deformable Objects
,”
IEEE Trans. Visual Comput. Graph.
,
9
(
4
), pp.
538
550
.
23.
Marynowski
,
K.
, and
Kapitaniak
,
T.
,
2002
, “
Kelvin–Voigt Versus Bürgers Internal Damping in Modeling of Axially Moving Viscoelastic Web
,”
Int. J. Non Linear Mech.
,
37
(
7
), pp.
1147
1161
.
24.
Sano
,
T. G.
,
Yamaguchi
,
T.
, and
Wada
,
H.
,
2017
, “
Slip Morphology of Elastic Strips on Frictional Rigid Substrates
,”
Phys. Rev. Lett.
,
118
(
17
), p.
178001
.
25.
Xie
,
D.
, and
Waas
,
A. M.
,
2006
, “
Discrete Cohesive Zone Model for Mixed-Mode Fracture Using Finite Element Analysis
,”
Eng. Fract. Mech.
,
73
(
13
), pp.
1783
1796
.
26.
Spackman
,
C. C.
,
Nowak
,
J. F.
,
Mills
,
K. L.
, and
Samuel
,
J.
,
2017
, “
A Cohesive Zone Model for the Stamping Process Encountered During Three-Dimensional Printing of Fiber-Reinforced Soft Composites
,”
ASME J. Manuf. Sci. Eng.
,
140
(
1
), p.
011010
.
27.
Domokos
,
G.
, and
Holmes
,
P.
,
1993
, “
Euler's Problem, Euler's Method, and the Standard Map; or, the Discrete Charm of Buckling
,”
J. Nonlinear Sci.
,
3
(
1
), pp.
109
151
.
28.
Cromer
,
A.
,
1981
, “
Stable Solutions Using the Euler Approximation
,”
Am. J. Phys.
,
49
(
5
), pp.
455
459
.
29.
Press
,
W. H.
,
2007
,
Numerical Recipes 3rd Edition: The Art of Scientific Computing
,
Cambridge University Press
,
Cambridge, UK
.
30.
Lavrykov
,
S.
,
Lindström
,
S. B.
,
Singh
,
K. M.
, and
Ramarao
,
B. V.
,
2012
, “
3D Network Simulations of Paper Structure
,”
Nord. Pulp Pap. Res. J.
,
27
(
2
), p.
256
.
31.
Ramasubramanian
,
M. K.
, and
Wang
,
Y.
,
2007
, “
A Computational Micromechanics Constitutive Model for the Unloading Behavior of Paper
,”
Int. J. Solids Struct
,
44
(
22–23
), pp.
7615
7632
.
You do not currently have access to this content.