Barrel-shaped surfaces are widely used in industries, e.g., blades, vases, and tabular parts. Because a part such as an aero-engine blade is typically quite large, the efficiency of its measurement becomes a critical issue. The recently emerged five-axis sweep scanning technology offers to be a powerful means to significantly increase the efficiency of measurement. However, currently it still mostly relies on humans to manually plan a five-axis sweep scanning path, and in most cases, the surface is simply divided into a number of smaller open patches for which the sweep scanning is then individually planned. We present an algorithm for automatically planning the five-axis sweep scanning for an arbitrary barrel-shaped surface in the form of either a compound, a trimmed, or a simple surface. The planning algorithm is novel in that no partitioning of the surface is needed and a single continuous five-axis sweep scanning path will be generated for the entire surface. By eliminating the nonsweeping time spent by the stylus due to its air-moves between multiple patches and also the time-costly approach-retraction operations required for each patch, the proposed algorithm is able to significantly reduce the total inspection time, sometimes more than 50%, as validated in our physical inspection experiments.

References

1.
Hu
,
P.
,
Zhang
,
R.
, and
Tang
,
K.
,
2017
, “
Automatic Generation of Five-Axis Continuous Inspection Paths for Free-Form Surfaces
,”
IEEE Trans. Autom. Sci. Eng.
,
14
(
1
), pp.
83
97
.
2.
Zhou
,
Z.
,
Zhang
,
Y.
, and
Tang
,
K.
,
2016
, “
Sweep Scan Path Planning for Efficient Freeform Surface Inspection on Five-Axis CMM
,”
Comput.-Aided Des.
,
77
, pp.
1
17
.
3.
Elkott
,
D. F.
,
Elmaraghy
,
H. A.
, and
Elmaraghy
,
W. H.
,
2002
, “
Automatic Sampling for CMM Inspection Planning of Free-Form Surfaces
,”
Int. J. Prod. Res.
,
40
(
11
), pp.
2653
2676
.
4.
Yu
,
M.
,
Zhang
,
Y.
,
Li
,
Y.
, and
Zhang
,
D.
,
2013
, “
Adaptive Sampling Method for Inspection Planning on CMM for Free-Form Surfaces
,”
Int. J. Adv. Manuf. Technol.
,
67
(
9–12
), pp.
1967
1975
.
5.
Obeidat
,
S. M.
, and
Raman
,
S.
,
2009
, “
An Intelligent Sampling Method for Inspecting Free-Form Surfaces
,”
Int. J. Adv. Manuf. Technol.
,
40
(
11–12
), pp.
1125
1136
.
6.
Edgeworth
,
R.
, and
Wilhelm
,
R. G.
,
1999
, “
Adaptive Sampling for Coordinate Metrology
,”
Precis. Eng.
,
23
(
3
), pp.
144
154
.
7.
Alvarez
,
B. J.
,
Fernandez
,
P.
,
Rico
,
J. C.
, and
Valino
,
G.
,
2008
, “
Accessibility Analysis for the Automatic Contact and Non-Contact Inspection on Coordinate Measuring Machines
,”
Lecture Notes in Engineering and Computer Science
, International Association of Engineering, London.
8.
Chang
,
H.-C.
, and
Lin
,
A. C.
,
2005
, “
Automatic Inspection of Turbine Blades Using a 3-Axis CMM Together With a 2-Axis Dividing Head
,”
Int. J. Adv. Manuf. Technol.
,
26
(
7–8
), pp.
789
796
.
9.
Chang
,
H. C.
, and
Lin
,
A. C.
,
2011
, “
Five-Axis Automated Measurement by Coordinate Measuring Machine
,”
Int. J. Adv. Manuf. Technol.
,
55
(
5–8
), pp.
657
674
.
10.
Buchal
,
R. O.
, and
Wang
,
A.
,
2006
, “
CMM Sequence Optimisation With Collision Detection
,”
Int. J. Comput. Appl. Technol.
,
26
(
1/2
), pp.
65
74
.
11.
Qu
,
L.
,
Xu
,
G.
, and
Wang
,
G.
,
1998
, “
Optimization of the Measuring Path on a Coordinate Measuring Machine Using Genetic Algorithms
,”
Measurement
,
23
(
3
), pp.
159
170
.
12.
Salman
,
R.
,
Carlson
,
J. S.
,
Ekstedt
,
F.
,
Spensieri
,
D.
,
Torstensson
,
J.
, and
Söderberg
,
R.
,
2016
, “
An Industrially Validated CMM Inspection Process With Sequence Constraints
,”
Procedia CIRP
,
44
, pp.
138
143
.
13.
Mian
,
S. H.
, and
Al-Ahmari
,
A.
,
2014
, “
Enhance Performance of Inspection Process on Coordinate Measuring Machine
,”
Measurement
,
47
(
1
), pp.
78
91
.
14.
Li
,
Y.
, and
Gu
,
P.
,
2004
, “
Free-Form Surface Inspection Techniques State of the Art Review
,”
Comput.-Aided Des.
,
36
(
13
), pp.
1395
1417
.
15.
Zhao
,
F.
,
Xu
,
X.
, and
Xie
,
S. Q.
,
2009
, “
Computer-Aided Inspection Planning—The State of the Art
,”
Comput. Ind.
,
60
(
7
), pp.
453
466
.
16.
Elkott
,
D. F.
, and
Veldhuis
,
S. C.
,
2005
, “
Isoparametric Line Sampling for the Inspection Planning of Sculptured Surfaces
,”
Comput. Aided Des.
,
37
(
2
), pp.
189
200
.
17.
Elkott
,
D. F.
, and
Veldhuis
,
S. C.
,
2007
, “
CAD-Based Sampling for CMM Inspection of Models With Sculptured Features
,”
Eng. Comput.
,
23
(
3
), pp.
187
206
.
18.
Quan
,
L.
,
Zhang
,
Y.
, and
Tang
,
K.
,
2018
, “
Curved Reflection Symmetric Axes on Free-Form Surfaces and Their Extraction
,”
IEEE Trans. Autom. Sci. Eng.
,
15
(
1
), pp.
111
126
.
19.
Zhang
,
Y.
,
Zhou
,
Z.
, and
Tang
,
K.
,
2018
, “
Sweep Scan Path Planning for Five-Axis Inspection of Free-Form Surfaces
,”
Rob. Comput.-Integr. Manuf.
,
49
, pp.
335
348
.
20.
McLean
,
I. W.
,
Weston
,
N. J.
,
Rees
,
M. S.
, and
Somerville
,
L. C.
,
2011
, “Method for Scanning the Surface of a Workpiece,” Renishaw PLC, Wotton-under-Edge, UK, U.S. Patent No.
US7908759B2
.
21.
Aarad
,
N.
, and
Elber
,
G.
,
1997
, “
Isometric Texture Mapping for Free-Form Surfaces
,”
Comput. Graph. Forum
,
16
(
5
), pp.
247
256
.
22.
Gu
,
X.
, and
Yau
,
S. T.
,
2003
, “
Global Conformal Surface Parameterization
,”
Eurographics/ACM SIGGRAPH Symposium on Geometry Processing
, Aachen, Germany, June 23–25, pp.
127
137
.
23.
Floater
,
M. S.
, and
Hormann
,
K.
,
2005
, “
Surface Parameterization: A Tutorial and Survey
,”
Advances in Multiresolution for Geometric Modelling
,
Springer
, New York, pp.
157
186
.
24.
Ren
,
F.
,
Sun
,
Y.
, and
Guo
,
D.
,
2009
, “
Combined Reparameterization-Based Spiral Toolpath Generation for Five-Axis Sculptured Surface Machining
,”
Int. J. Adv. Manuf. Technol.
,
40
(
7–8
), pp.
760
768
.
25.
Xu
,
J.
, and
Jin
,
C.
,
2013
, “
Boundary-Conformed Machining for Trimmed Free-Form Surfaces Based on Mesh Mapping
,”
Int. J. Comput. Integr. Manuf.
,
26
(
8
), pp.
720
730
.
26.
Hu
,
P.
,
Chen
,
L.
,
Wang
,
J.
, and
Tang
,
K.
,
2015
, “
Boundary-Conformed Tool Path Generation Based on Global Reparametrization
,”
14th IEEE International Conference on Computer-Aided Design and Computer Graphics
(
CAD/Graphics
), Xi'an, China, Aug. 26–28, pp.
165
172
.
27.
Yuwen
,
S.
,
Dongming
,
G.
, and
Haixia
,
W.
,
2006
, “
Iso-Parametric Tool Path Generation From Triangular Meshes for Free-Form Surface Machining
,”
Int. J. Adv. Manuf. Technol.
,
28
(
7–8
), pp.
721
726
.
28.
Bo
,
P.
,
Bartoň
,
M.
,
Plakhotnik
,
D.
, and
Pottmann
,
H.
,
2016
, “
Towards Efficient 5-Axis Flank CNC Machining of Free-Form Surfaces Via Fitting Envelopes of Surfaces of Revolution
,”
Comput.-Aided Des.
,
79
, pp.
1
11
.
29.
Jun
,
C. S.
,
Cha
,
K.
, and
Lee
,
Y. S.
,
2003
, “
Optimizing Tool Orientations for 5-Axis Machining by Configuration-Space Search Method
,”
Comput.-Aided Des.
,
35
(
6
), pp.
549
566
.
30.
Liu
,
M.
,
Liu
,
Y. S.
, and
Ramani
,
K.
,
2009
, “
Computing Global Visibility Maps for Regions on the Boundaries of Polyhedra Using Minkowski Sums
,”
Comput.-Aided Des.
,
41
(
9
), pp.
668
680
.
31.
Hou
,
G.
, and
Frank
,
M. C.
,
2017
, “
Computing the Global Visibility Map Using Slice Geometry for Setup Planning
,”
ASME J. Manuf. Sci. Eng.
,
139
(
8
), p. 081006.
32.
Dakdouk
,
D.
, and
Xi
,
F.
,
2017
, “
Tool Accessibility Analysis for Robotic Drilling and Fastening
,”
ASME J. Manuf. Sci. Eng.
,
139
(
9
), p. 091012.
33.
Huang
,
N.
,
Lynn
,
R.
, and
Kurfess
,
T.
,
2017
, “
Aggressive Spiral Toolpaths for Pocket Machining Based on Medial Axis Transformation
,”
ASME J. Manuf. Sci. Eng.
,
139
(
5
), p. 051011.
34.
Patel
,
D.
, and
Lalwani
,
D.
,
2017
, “
Quantitative Comparison of Pocket Geometry and Pocket Decomposition to Obtain Improved Spiral Tool Path: A Novel Approach
,”
ASME J. Manuf. Sci. Eng.
,
139
(
3
), p. 031020.
You do not currently have access to this content.