Variable thickness tube drawing is a new process for the production of high performance tubes. In this study, experiments were conducted to evaluate the effect of cross section reduction on the microstructure and mechanical properties of variable thickness aluminium tubes drawn using two different position controlled mandrel techniques. Various tubes with three different outer diameters were subjected to cold drawing at room temperature from 11% to 41% cross section reduction. The local mechanical properties were determined from tensile tests carried out on specimens cut from different positions in the tubes parallel to their axes. The distributions of the Vickers hardness over the surfaces at 0 deg and 90 deg to the drawing direction were examined. It was found that the microhardness, yield strength, and ultimate tensile of the deformed samples increase and the corresponding elongation decreases with the increase of cross section reduction. Also, the anisotropy in microstructure and mechanical properties is more significant with increasing of cross section reduction. The evolution of mechanical properties of drawn tubes versus cross section reduction depends on the mandrel shapes and initial tube outer diameter. This study helps to further understand the microstructure and mechanical properties evolutions during tube drawing process with variable thickness.

References

1.
Bourget
,
J.-P.
,
Fafard
,
M.
,
Shakeri
,
H. R.
, and
Côté
T.
, 2009, “
Optimization of Heat Treatment in Cold-Drawn 6063 Aluminium Tubes
,”
J. Mater. Process. Technol.
,
209
(
11
), pp.
5035
5041
.
2.
Siddiqui
,
R. A.
,
Abdullah
,
H. A.
, and
Al-Belushi
,
K. R.
, 2000, “
Influence of Aging Parameters on the Mechanical Properties of 6063 Aluminium Alloy
,”
J. Mater. Process. Technol.
,
120
, pp.
234
240
.
3.
Bihamta
,
R.
,
Bui
,
Q. H.
,
Guillot
,
M.
,
D’Amours
,
G.
,
Rahem
,
A.
, and
Fafard
,
M.
, 2011, “
Perspectives for the Application of Variable Thickness Aluminium Tubes in Hydroforming of Complex Tubes
,”
Mater. Sci. Forum
,
690
, pp.
447
450
.
4.
Calhoun
,
J.
, and
Davis
,
A.
, 1988, “
Method and Apparatus for Making Step Wall Tubing
,” U.S. Patent No. 4,788,841.
5.
Newport
,
C.
,
McSwiggan
,
S. T.
, and
Savescu
,
O. I.
, 2004, “
Method of Manufacturing Structural Components From Tube Blanks of Variable Wall Thickness
,” U.S. Patent No. 20040200255.
6.
Alexoff
,
R. L.
, 2004, “
Method and Apparatus for Producing Variable Wall Thickness Tubes and Hollow Shafts
,” U.S. Patent No. 6,807,837.
7.
Guillot
,
M.
,
Fafard
,
M.
,
Girard
,
S.
,
D’Amours
,
G.
, and
Rahem
,
A.
, 2010, “
Experimental Study of the Aluminium Tube Drawing Process With Variable Wall Thickness
,”
Proceeding of SAE2010 World Congress
, Apr. 13–15, Detroit.
8.
Bihamta
,
R.
,
D’Amours
,
G.
,
Rahem
,
A.
,
Guillot
,
M.
, and
Fafard
,
M.
, 2010, “
Numerical Studies on the Production of Variable Thickness Aluminium Tubes for Transportation Purposes
,”
Proceeding of SAE2010 World Congress
, Apr. 13–15, Detroit.
9.
Bihamta
,
R.
,
D’Amours
,
G.
,
Bui
,
Q. H.
,
Rahem
,
A.
,
Guillot
,
M.
, and
Fafard
,
M.
, 2010, “
Optimization on the Production of Variable Thickness Aluminium Tubes
,”
Proceeding of ASME2010 conference
, Oct. 12–15, Erie, Pennsylvania.
10.
Bihamta
,
R.
,
Bui
,
Q. H.
,
Guillot
M.
,
D’Amours
G.
,
Rahem
A.
, and
Fafard
,
M.
, 2011, “
A New Method for Production of Variable Thickness Tubes: Numerical and Experimental Studies
,”
J. Mater. Technol.
,
211
, pp.
578
589
11.
Bui
,
Q. H.
,
Bihamta
,
R.
,
Guillot
,
M.
,
D’Amours
,
G.
,
Rahem
,
A.
, and
Fafard
,
M.
, 2011, “
Investigation of Formability Limit of Aluminium Tubes Drawn With Variable Wall Thickness
,”
J. Mater. Process. Technol.
,
211
, pp.
402
414
.
12.
Rumiński
,
M.
,
Łuksza
,
J.
,
Kusiak
,
J.
, and
Paćko
,
M.
, 1998, “
Analysis of the Effect of Die Shape on the Distribution of Mechanical Properties and Strain Field in the Tube Sinking Process
,”
J. Mater. Process. Technol.
,
80–81
, pp.
683
689
.
13.
Sadok
,
L.
,
Packo
,
M.
,
Skolyszewski
,
A.
, and
Ruminski
,
M.
, 1992, “
Influence of the Shape of the Die on the Field of Strains in the Drawing Process
,”
J. Mater. Process. Technol.
,
34
, pp.
381
388
.
14.
Castro
,
A. L. R.
,
Campos
,
H. B.
, and
Cetlin
,
P. R.
, 1996, “
Influence of Die Semi-Angle on Mechanical Properties of Single and Multiple Pass Drawn Copper
,”
J. Mater. Process. Technol.
,
60
, pp
179
182
.
15.
ASTM standard E8, 2004, “
Standard Test Methods for Tension Testing of Metallic Materials
,” pp.
1
24
.
16.
Huang
,
X.
,
Tsuji
,
N.
,
Hansen
,
N.
, and
Minamino
,
Y.
, 2003, “
Microstructural Evolution During Accumulative Roll-Bonding of Commercial Purity Aluminium
,”
Mater. Sci. Eng. A
,
340
(
1–2
), pp.
265
271
.
17.
Pirgazi
,
H.
,
Akbarzadeh
,
A.
,
Petrov
,
R.
,
Sidor
,
J.
, and
Kestens
,
L.
, 2008, “
Texture Evolution of AA3003 Aluminum Alloy Sheet Produced by Accumulative Roll Bonding
,”
Mater. Sci. Eng.: A
,
492
(
1–2
), pp.
110
117
.
18.
Juul Jensen
,
D.
, and
Hansen
,
N.
, 1990, “
Flow Stress Anisotropy in Aluminium
,”
Acta Metall. Mater.
,
38
(
8
), pp.
1369
1380
.
19.
Singh
,
R. K.
,
Singh
,
A. K.
, and
Eswara Prasad
,
N.
, 2000, “
Texture and Mechanical Property Anisotropy in an Al–Mg–Si–Cu Alloy
,”
Mater. Sci. Eng. A
,
277
(
1–2
), pp.
114
122
.
20.
Zahid
,
G. H.
,
Huang
,
Y.
, and
Prangnell
,
P. B.
, 2009, “
Microstructure and Texture Evolution During Annealing a Cryogenic-SPD Processed Al-Alloy With a Nanoscale Lamellar HAGB Grain Structure
,”
Acta Mater.
,
57
(
12
), pp.
3509
3521
.
21.
Bui
,
Q. H.
,
Dirras
,
G. F.
,
Hocini
,
A.
,
Ramtani
,
S.
,
Abdul-latif
,
A.
,
Gubicza
,
J.
,
Chauveau
,
T.
, and
Fogarassy
,
Z.
, 2008, “
Microstructure and Mechanical Properties of Commercial Purity HIPed and Crushed Aluminium
,”
Mater. Sci. Forum
,
584–586
, pp.
579
584
.
22.
Dirras
,
G.
,
Cheveau
,
T.
,
Abdul-Latif
,
A.
,
Ramtani
,
S.
, and
Bui
,
Q. H.
, 2010, “
Microstructure Characterization of High-Purity Aluminium Processed by Dynamic Severe Plastic Deformation
,”
Physica Status Solidi A
,
207
, pp.
2233
2237
.
23.
Bui
,
Q. H.
,
Amira
,
S.
,
Rahem
,
A.
, and
Fafard
,
M.
, 2011, “
Characterization of the Microstructure and Texture Evolution During Cold Drawing of Variable Wall Thickness Al-Alloys Tubes
,”
Mater. Charact.
(submitted).
24.
Li
,
Z. J.
,
Winther
,
G.
, and
Hansen
,
N.
, 2004, “
Anisotropy of Plastic Deformation in Rolled Aluminum
,”
Mater. Sci. Eng. A
,
387–389
, pp.
199
202
.
25.
Bihamta
,
R.
,
Bui
,
Q. H.
,
Guillot
,
M.
,
D’Amours
,
G.
,
Rahem
,
A.
, and
Fafard
,
M.
, 2011, “
Application of a New Procedure for the Optimization of Variable Thickness Drawing of Aluminium Tubes
,”
CIRP J. Manuf. Sci. Technol.
(submitted).
26.
Bui
,
Q. H.
,
Dirras
,
G.
,
Ramtani
,
S.
, and
Gubicza
,
J.
, 2010, “
On the Strengthening Behavior of Ultrafine-Grained Nickel Processed From Nanopowders
,”
Mater. Sci. Eng.: A
,
527
(
13–14
), pp.
3227
3235
.
27.
Cotterill
,
P.
, and
Mould
,
P. R.
, 1976,
Recrystallization and Grain Growth in Metals
(
SurreyUniversity Press
,
London
).
28.
Ivanov
,
S.
, and
Markovic
,
D.
, 2002, “
Influence of Hard Cold Working on Microstructure and Properties of Annealing Copper Tubes
,”
J. Min. Metall.
,
38
(
3–4
), pp.
163
170
.
29.
Nah
,
J. J.
,
Kang
,
H. G.
,
Huha
,
M. Y.
, and
Engler
,
O.
, 2008, “
Effect of Strain States During Cold Rolling on the Recrystallized Grain Size in an Aluminum Alloy
,”
Scr. Mater.
,
58
, pp.
500
503
.
30.
Kang
,
S. J.
,
Kim
,
H. K.
, and
Kang
,
B. S.
, 2005, “
Tube Size Effect on Hydroforming Formability
,”
J. Mater. Process. Technol.
,
160
, pp.
24
33
.
31.
Trana
,
K.
, 2002, “
Finite Element Simulation of the Tube Hydroforming Process—Bending, Performing and Hydroforming
,”
J. Mater. Process. Technol.
,
127
, pp.
401
408
.
You do not currently have access to this content.