In this paper, a novel Mahalanobis–Taguchi system (MTS)-based fault detection, isolation, and prognostics scheme is presented. The proposed data-driven scheme utilizes the Mahalanobis distance (MD)-based fault clustering and the progression of MD values over time. MD thresholds derived from the clustering analysis are used for fault detection and isolation. When a fault is detected, the prognostics scheme, which monitors the progression of the MD values, is initiated. Then, using a linear approximation, time to failure is estimated. The performance of the scheme has been validated via experiments performed on rolling element bearings inside the spindle headstock of a microcomputer numerical control (CNC) machine testbed. The bearings have been instrumented with vibration and temperature sensors and experiments involving healthy and various types of faulty operating conditions have been performed. The experiments show that the proposed approach renders satisfactory results for bearing fault detection, isolation, and prognostics. Overall, the proposed solution provides a reliable multivariate analysis and real-time decision making tool that (1) presents a single tool for fault detection, isolation, and prognosis, eliminating the need to develop each separately and (2) offers a systematic way to determine the key features, thus reducing analysis overhead. In addition, the MTS-based scheme is process independent and can easily be implemented on wireless motes and deployed for real-time monitoring, diagnostics, and prognostics in a wide variety of industrial environments.

1.
Ocak
,
H.
, and
Loparo
,
K. A.
, 2001, “
A New Bearing Fault Detection and Diagnosis Scheme Based on Hidden Markov Modeling of Vibration Signals
,”
Acoustics, Speech, and Signal Processing, ICASSP Proceedings
, Vol.
5
, pp.
3141
3144
.
2.
Li
,
C. J.
, and
Wu
,
S. M.
, 1989, “
On-Line Detection of Localized Defects in Bearings by Pattern Recognition Analysis
,”
ASME J. Eng. Ind.
0022-0817,
111
(
4
), pp.
331
336
.
3.
Harris
,
T. A.
, 2001,
Rolling Bearing Analysis
, 4th ed.,
Wiley-Interscience
,
New York, NY
.
4.
McFadden
,
P. D.
, and
Smith
,
J. D.
, 1984, “
Model for the Vibration Produced by a Single Point Defect in a Rolling Element Bearing
,”
J. Sound Vib.
0022-460X,
96
(
1
), pp.
69
82
.
5.
Hochmann
,
D.
, and
Bechhoefer
,
E.
, 2005, “
Envelope Bearing Analysis: Theory and Practice
,”
IEEE Aerospace Conference
, pp.
3658
3666
.
6.
Li
,
B.
,
Chow
,
M. -Y.
,
Tipsuwan
,
Y.
, and
Hung
,
J. C.
, 2000, “
Neural-Network-Based Motor Rolling Bearing Fault Diagnosis
,”
IEEE Trans. Ind. Electron.
0278-0046,
47
(
5
), pp.
1060
1069
.
7.
Janjarasjitt
,
S.
,
Ocak
,
H.
, and
Loparo
,
K. A.
, 2008, “
Bearing Condition Diagnosis and Prognosis Using Applied Nonlinear Dynamical Analysis of Machine Vibration Signal
,”
J. Sound Vib.
0022-460X,
317
(
1–2
), pp.
112
126
.
8.
Wu
,
B.
,
Wang
,
M.
,
Yu
,
S.
, and
Feng
,
C.
, 2007, “
An Approach of Bearing Fault Detection and Diagnosis at Varying Rotating Speed
,”
IEEE ICCA
, pp.
1634
1637
.
9.
Mechefske
,
C. K.
, and
Mathew
,
J.
, 1995, “
Fault Detection and Diagnosis in Low Speed Rolling Element Bearings Using Inductive Inference Classification
,”
Mech. Syst. Signal Process.
0888-3270,
9
, pp.
275
286
.
10.
Dalpiaz
,
G.
,
Rivola
,
A.
, and
Rubini
,
R.
, 2000, “
Effectiveness and Sensitivity of Vibration Processing Techniques for Local Fault Detection in Gears
,”
Mech. Syst. Signal Process.
0888-3270,
14
(
3
), pp.
387
412
.
11.
Yan
,
R.
, and
Gao
,
R. X.
, 2005, “
An Efficient Approach to Machine Health Diagnosis Based on Harmonic Wavelet Packet Transform
,”
Robot. Comput.-Integr. Manufact.
,
21
(
4–5
), pp.
291
301
.
12.
Tse
,
P. W.
,
Peng
,
Y. H.
, and
Yam
,
R.
, 2001, “
Wavelet Analysis and Envelope Detection for Rolling Element Bearing Fault Diagnosis—Their Effectiveness and Flexibilities
,”
ASME J. Vibr. Acoust.
0739-3717,
123
(
3
), pp.
303
310
.
13.
Lou
,
X.
, and
Loparo
,
K. A.
, 2004, “
Bearing Fault Diagnosis Based on Wavelet Transform and Fuzzy Inference
,”
Mech. Syst. Signal Process.
0888-3270,
18
(
5
), pp.
1077
1095
.
14.
Jang
,
J. S. R.
, 1993, “
ANFIS: Adaptive-Network-Based Fuzzy Inference System
,”
IEEE Trans. Syst. Man Cybern.
0018-9472,
23
(
3
), pp.
665
685
.
15.
Jardine
,
A. K. S.
,
Lin
,
D.
, and
Banjevic
,
D.
, 2006, “
A Review on Machinery Diagnostics and Prognostics Implementing Condition-Based Maintenance
,”
Mech. Syst. Signal Process.
0888-3270,
20
(
7
), pp.
1483
1510
.
16.
Li
,
Y.
,
Billington
,
S.
,
Zhang
,
C.
,
Kurfess
,
T.
,
Danyluk
,
S.
, and
Liang
,
S.
, 1999, “
Adaptive Prognostics for Rolling Element Bearing Condition
,”
Mech. Syst. Signal Process.
0888-3270,
13
, pp.
103
113
.
17.
Li
,
Y.
,
Kurfess
,
T. R.
, and
Liang
,
S. Y.
, 2000, “
Stochastic Prognostics for Rolling Element Bearings
,”
Mech. Syst. Signal Process.
0888-3270,
14
, pp.
747
762
.
18.
Li
,
Y.
,
Zhang
,
C.
,
Kurfess
,
T. R.
,
Danyluk
,
S.
, and
Liang
,
S. Y.
, 2000, “
Diagnostics and Prognostics of a Single Surface Defect on Roller Bearings
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
0954-4062,
214
(
9
), pp.
1173
1185
.
19.
Luo
,
J.
,
Bixby
,
A
.,
Pattipati
,
K.
,
Qiao
,
L.
,
Kawamoto
,
M.
, and
Chigusa
,
S.
, 2003, “
An Interacting Multiple Model Approach to Model-Based Prognostics
,”
IEEE International Conference on Systems, Man and Cybernetics
, Vol.
1
, pp.
189
194
.
20.
Wang
,
P.
, and
Vachtsevanos
,
G.
, 2001, “
Fault Prognostics Using Dynamic Wavelet Neural Networks
,”
Artif. Intell. Eng. Des. Anal. Manuf.
0890-0604,
15
(
4
), pp.
349
365
.
21.
Qiu
,
H.
, and
Lee
,
J.
, 2004, “
Feature Fusion and Degradation Using Self-Organizing Map
,”
Proceedings of the 2004 International Conference on Machine Learning and Applications
, pp.
107
114
.
22.
R. B.
Chinnam
, and
P.
Baruah
, 2004, “
A Neuro-Fuzzy Approach for Estimating Mean Residual Life in Condition-Based Maintenance Systems
,”
Int. J. Mater. Prod. Technol.
0268-1900,
20
(
1–3
), pp.
166
179
.
23.
Taguchi
,
G.
,
Chowdury
,
S.
, and
Wu
,
Y.
, 2001,
The Mahalanobis Taguchi System
,
McGraw-Hill
,
New York
.
24.
Mahalanobis
,
P. C.
, 1936, “
On the Generalized Distance in Statistics
,”
Proceedings, National Institute of Science of India
, Vol.
2
(1), pp.
49
55
.
25.
Taguchi
,
G.
, and
Jugulum
,
R.
, 2002,
The Mahalanobis–Taguchi Strategy— A Pattern Technology System
,
Wiley
,
New York
.
26.
Chinnam
,
R. B.
,
Rai
,
B.
, and
Singh
,
N.
, 2004, “
Tool-Condition Monitoring From Degradation Signals Using Mahalanobis Taguchi System
,”
Robust Engineering, ASI’s 20th Annual Symposium
, pp.
343
351
.
27.
Wang
,
H.
,
Chiu
,
C.
, and
Su
,
C.
, 2004, “
Data Classification Using Mahalanobis Taguchi System
,”
Journal of Chinese Institute of Industrial Engineers
,
21
(
6
), pp.
606
618
.
28.
Cudney
,
E. A.
,
Paryani
,
K.
, and
Ragsdell
,
K. M.
, 2007, “
Applying the Mahalanobis–Taguchi System to Vehicle Ride
,”
Journal of Industrial and Systems Engineering
1735-8272,
1
(
3
), pp.
251
259
.
29.
Cudney
,
E. A.
,
Jugulum
,
R.
, and
Paryani
,
K.
, 2009, “
Forecasting Consumer Satisfaction for Vehicle Ride Using a Multivariate Measurement System
,”
International Journal of Industrial and Systems Engineering
,
4
, pp.
683
696
.
30.
Foster
,
C. R.
,
Jugulum
,
R.
, and
Frey
,
D. D.
, 2009, “
Evaluating an Adaptive One-Factor-at-a-Time Search Procedure Within the Mahalanobis–Taguchi System
,”
International Journal of Industrial and Systems Engineering
,
4
, pp.
600
614
.
31.
Asada
,
M.
, 2001, “
Wafer Yield Prediction by the Mahalanobis–Taguchi System
,”
IEEE International Workshop on Statistical Methodology
, pp.
25
28
.
32.
Hayashi
,
S.
,
Tanaka
,
Y.
, and
Kodama
,
E.
, 2002, “
A New Manufacturing Control System Using Mahalanobis Distance for Maximizing Productivity
,”
IEEE Trans. Semicond. Manuf.
0894-6507,
15
(
4
), pp.
442
446
.
33.
Mohan
,
D.
,
Saygin
,
C.
, and
Sarangapani
,
J.
, 2008, “
Real-Time Detection of Grip Length Deviation During Pull-Type Fastening: A Mahalanobis–Taguchi System (MTS)-Based Approach
,”
Int. J. Adv. Manuf. Technol.
0268-3768,
39
(
9–10
), pp.
995
1008
.
34.
Dasgupta
,
T.
, 2009, “
Integrating the Improvement and the Control Phase of Six Sigma for Categorical Responses Through Application of Mahalanobis–Taguchi System MTS
,”
International Journal of Industrial and Systems Engineering
,
4
, pp.
615
630
.
35.
Srinivasaraghavan
,
J.
, and
Allada
,
V.
, 2006, “
Application of Mahalanobis Distance as a Lean Assessment Metric
,”
Int. J. Adv. Manuf. Technol.
0268-3768,
29
(
11–12
), pp.
1159
1168
.
36.
Kim
,
S. B.
,
Tsui
,
K. -L.
,
Sukchotrat
,
T.
, and
Chen
,
V. C. P.
, 2009, “
A Comparison Study and Discussion of the Mahalanobis–Taguchi System
,”
International Journal of Industrial and Systems Engineering
,
4
, pp.
631
644
.
37.
Cudney
,
E. A.
,
Drain
,
D.
,
Paryani
,
K.
, and
Naresh
,
S.
, 2009, “
A Comparison of the Mahalanobis–Taguchi System to a Standard Statistical Method for Defect Detection
,”
Journal of Industrial and Systems Engineering
1735-8272,
2
(
4
), pp.
250
258
.
38.
Jugulum
,
R.
, 2002, “
Comparison between Mahalanobis–Taguchi System and Artificial Neural Networks
,”
Journal of Quality Engineering Forum
,
10
(
1
), pp.
60
73
.
39.
Woodall
,
W. H.
,
Koudelik
,
R.
,
Tsui
,
K. -L.
,
Kim
,
S. B.
,
Stoumbos
,
Z. G.
, and
Carvounis
,
C. P.
, 2003, “
A Review and Analysis of the Mahalanobis–Taguchi System
,”
Technometrics
0040-1706,
45
, pp.
1
15
.
40.
Isermann
,
R.
, 2005,
Fault Diagnosis Systems: An Introduction from Fault Detection to Fault Tolerance
,
Springer
,
Berlin, Germany
.
41.
Wowk
,
V.
, 1991,
Machinery Vibrations
,
McGraw–Hill
,
New York
.
You do not currently have access to this content.