One of the most important problems encountered in die-casting processes is porosity due to air entrapment in the molten metal during the injection process. The aim of this work is to study experimentally and numerically the different air entrapment phenomena that may take place in the early stages of the filling of a vertical die cavity with a rectangular shape for operating conditions typically used in low and medium-pressure die-casting processes. Special attention is given to determining the influence of the gravitational forces on the flow pattern. Numerical simulation of the flow in the die cavity is carried out for the liquid phase using a commercial computational fluid dynamics (CFD) code (FLOW-3D) based on the solution algorithm-volume of fluid (SOLA-VOF) approach to solve the coupling between the momentum and mass conservation equations and to treat the free-surface, while the amount of air evacuated through vents is calculated by using an unsteady one-dimensional adiabatic model that retains friction effects. The main characteristics of the flow at the early instants of the die cavity filling are analyzed for different operating conditions, and the different flow patterns are summarized in a map as a function of the Reynolds and Froude numbers. Also, filling visualization experiments are carried out on a test bench using water as working fluid in a transparent die model and a high-speed camera. The numerical and experimental results obtained for the free-surface profile evolution are compared for different inlet velocities of the fluid and the viability of the numerical tools used to predict the final amount of trapped air in the die cavity is discussed.

1.
Campbell
,
J.
, 1991,
Castings
,
Butterworth-Heinemann
,
Oxford, UK
, p.
64
.
2.
Cleary
,
P. W.
,
Ha
,
J.
,
Prakash
,
M.
, and
Nguyen
,
T.
, 2006, “
3D SPH Flow Predictions and Validation for High Pressure Die Casting of Automotive Components
,”
Appl. Math. Model.
0307-904X,
30
(
11
), pp.
1406
1427
.
3.
Kimatsuka
,
A.
,
Ohnaka
,
I.
,
Zhu
,
J. D.
,
Sugiyama
,
A.
, and
Kamitsu
,
T.
, 2003, “
Mold Filling Simulation of High Pressure Die Casting for Predicting Gas Porosity
,”
Proceedings From the Tenth International Conference on Modeling of Casting, Welding and Advanced Solidification Processes
,
D. M.
Stefanescu
,
J. A.
Warren
,
M. R.
Jolly
, and
M.
Krane
, eds., pp.
335
342
.
4.
Lee
,
W. B.
,
Lu
,
H. Y.
, and
Lui
,
Y. B.
, 1995, “
A Computer-Simulation of the Effect of Wall Thickness on the Metal Flow in Die-Casting Dies
,”
J. Mater. Process. Technol.
0924-0136,
52
(
2–4
), pp.
248
269
.
5.
Kulasegaram
,
S.
,
Bonet
,
J.
,
Lewis
,
R. W.
, and
Profit
,
M.
, 2003, “
High Pressure Die Casting Simulation Using a Lagrangian Particle Method
,”
Commun. Numer. Methods Eng.
1069-8299,
19
(
9
), pp.
679
687
.
6.
Yan
,
H.
,
Zhuang
,
W.
,
Hu
,
Y.
,
Zhang
,
Q.
, and
Jin
,
H.
, 2007, “
Numerical Simulation of AZ91D Alloy Automobile Plug in Pressure Die Casting Process
,”
J. Mater. Process. Technol.
0924-0136,
187–188
, pp.
349
353
.
7.
Ginzburg
,
I.
, and
Steiner
,
K.
, 2003, “
Lattice Bolzmann Model for Free-Surface Flow and Its Application to Filling Process in Casting
,”
J. Comput. Phys.
0021-9991,
185
, pp.
61
99
.
8.
Ilinca
,
F.
, and
Hetu
,
J. F.
, 2000, “
Finite Element Solution of Three-Dimensional Turbulent Flows Applied to Mold-Filling Problems
,”
Int. J. Numer. Methods Fluids
0271-2091,
34
, pp.
729
750
.
9.
Ha
,
J.
, and
Cleary
,
P. W.
, 2000, “
Comparison of SPH Simulations of High Pressure Die Casting With the Experiments and VOF Simulations of Schmid and Klein
,”
Cast Met. Res. J.
0008-7467,
12
(
6
), pp.
409
418
.
10.
Esparza
,
C. E.
,
Guerrero-Mata
,
M. P.
, and
Ríos-Mercado
,
R. Z.
, 2006, “
Optimal Design of Gating Systems by Gradient Search Methods
,”
Comput. Mater. Sci.
0927-0256,
36
, pp.
457
467
.
11.
Lee
,
K. S.
, and
Lin
,
J. C.
, 2006, “
Design of the Runner and Gating System Parameters for a Multi-Cavity Injection Mould Using FEM and Neural Network
,”
Int. J. Adv. Manuf. Technol.
0268-3768,
27
(
11–12
), pp.
1089
1096
.
12.
Smith
,
W. E.
, and
Wallace
,
J. F.
, 1963, “
Gating of Die Castings
,”
American Foundrymen’s Society Transactions
0065-8375,
71
, pp.
325
348
.
13.
Lindsey
,
D.
, and
Wallace
,
J. F.
, 1972, “
Effect of Vent Size and Design, Lubrication Practice, Metal Degassing, Die Texturing and Filling of Shot Sleeve on Die Casting Soundness
,”
Transactions of the Seventh SDCE International Die Casting Congress and Exposition
, Chicago, Paper No. 10372, pp.
1
15
.
14.
Hao
,
S. W.
,
Hu
,
B. H.
,
Niu
,
X. P.
, and
Pehlke
,
R. D.
, 1998, “
Atomization in High Pressure Die Casting—A Problem and a Challenge
,”
Die Cast. Eng.
0012-253X,
42
(
5
), pp.
42
56
.
15.
Brevick
,
J. R.
,
Bhoi
,
A.
, and
Harm
,
J.
, 2006, “
Evaluation of Flow in Die Casting Using High Speed Radiography
,”
NADCA, 110th Metal Casting Congress
, Columbus, OH.
16.
Vinarcik
,
E. J.
, 2003,
High Integrity Die Casting Processes
,
Wiley
,
New York
, p.
53
.
17.
Eckert
,
E. R. G.
, 1989, “
Similarity Analysis Applied to the Die Casting Process
,”
ASME J. Eng. Mater. Technol.
0094-4289,
111
(
4
), pp.
393
398
.
18.
Alexandrou
,
A. N.
,
Duc
,
E.
, and
Entov
,
V.
, 2001, “
Inertial, Viscous and Yield Stress Effects in Bingham Fluid Filling of a 2-D Cavity
,”
J. Non-Newtonian Fluid Mech.
0377-0257,
96
(
3
), pp.
383
403
.
19.
Hernández
,
J.
,
López
,
J.
, and
Faura
,
F.
, 2001, “
Influence of Unsteady Effects on Air Venting in Pressure Die Casting
,”
ASME Trans. J. Fluids Eng.
0098-2202,
123
, pp.
884
892
.
20.
Hirt
,
C. W.
, and
Nichols
,
B. D.
, 1981, “
Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries
,”
J. Comput. Phys.
0021-9991,
39
, pp.
201
225
.
21.
Zamora
,
R.
,
Hernández-Ortega
,
J. J.
,
Faura
,
F.
,
López
,
J.
, and
Hernández
,
J.
, 2008, “
Experimental Investigation of Porosity Formation During the Slow Injection Phase in High-Pressure Die-Casting Processes
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
130
(
5
) p.
051009
.
22.
Hirt
,
C. W.
, and
Sicilian
,
J. M.
, 1985, “
A Porosity Technique for the Definition of Obstacles in Rectangular-Cell Meshes
,”
Proceedings of the Fourth International Conference of Numerical Ship Hydrodynamics
, National Academy of Science, Washington, D.C., p.
450
.
You do not currently have access to this content.