Nanomanipulation refers to the process of transporting nanoscale components. It has found applications in nanodevice prototyping and biomolecular and cellular investigation. In this paper, we present an atomic force microscope (AFM) based approach for automated manipulation of nanoparticles to form designed patterns. The automated manipulation is based on a novel method, successive directional push. This method keeps pushing along a fixed forward direction until the particle reaches the baseline of the target position, and it then repeats the pushing process along the baseline direction. This process is iterated until the particle reaches its target position. By examining the topography of several local parallel scan lines, this method can determine the lateral coordinate of the particle. The novelty of this method lies in the fact that further pushing along the same pushing direction can be conducted without precise information about the forward position. The successive directional push method has been successfully implemented into an AFM system. We demonstrate that complex designed patterns including over 100 latex particles of 50 nm diameter can be fabricated with this method.

1.
Carlsson
,
S. B.
,
Junno
,
T.
,
Montelius
,
L.
, and
Samuelson
,
L.
, 1999, “
Mechanical Tuning of Tunnel Gaps for the Assembly of Single-Electron Transistors
,”
Appl. Phys. Lett.
0003-6951,
75
, pp.
1461
1463
.
2.
Maier
,
S. A.
,
Kik
,
P. G.
,
Atwater
,
H. A.
,
Meltzer
,
S.
,
Harel
,
E.
,
Koel
,
B. E.
, and
Requicha
,
A. A. G.
, 2003, “
Local Detection of Electromagnetic Energy Transport Below the Diffraction Limit in Metal Nanoparticle Plasmon Waveguides
,”
Nature Mater.
1476-1122,
2
, pp.
229
232
.
3.
Mokaberi
,
B.
, and
Requicha
,
A. A. G.
, 2006, “
Drift Compensation for Automatic Nanomanipulation With Scanning Probe Microscopes
,”
IEEE. Trans. Autom. Sci. Eng.
1545-5955,
3
(
3
), pp.
199
207
.
4.
Zheng
,
J.
,
Chen
,
Z.
, and
Liu
,
Z.
, 2000, “
Atomic Force Microscopy-Based Nanolithography on Silicon Using Colloidal Au Nanoparticles as a Nanooxidation Mask
,”
Langmuir
0743-7463,
16
(
24
), pp.
9673
9676
.
5.
Watkins
,
A. N. I. J. L.
, and
Jordan
,
J. D.
, 2004, “
Single Wall Carbon Nanotube-Based Structural Health Sensing Materials
,”
Technical Proceedings of the 2004 NSTI Nanotechnology Conference and Trade Show
, Vol.
3
, pp.
11
15
.
6.
Terris
,
B. D.
, and
Rishton
,
S. A.
, 1998, “
Atomic Force Microscope-Based Data Storage: Track Servo and Wear Study
,”
Appl. Phys. (Berlin)
0340-3793,
66
, pp.
809
813
.
7.
Fotiadis
,
D.
,
Scheuring
,
S.
,
Müller
,
S. A.
,
Engel
,
A.
, and
Muller
,
D. J.
, 2002, “
Imaging and Manipulation of Biological Structures With the AFM
,”
Micron
0968-4328,
33
, pp.
385
397
.
8.
Zheng
,
L.
,
Brody
,
J. P.
, and
Burke
,
P. J.
, 2004, “
Electronic Manipulation of DNA, Proteins and Nanoparticles for Potential Circuit Assembly
,”
Biosens. Bioelectron.
0956-5663,
20
, pp.
606
619
.
9.
Lu
,
J. H.
, 2004, “
Nanomanipulation of Extended Single-DNA Molecules on Modified Mica Surfaces Using the Atomic Force Microscopy
,”
Colloids Surf., B
0927-7765,
39
, pp.
177
180
.
10.
Requicha
,
A. A. G.
, 2008, “
Nanomanipulation With the Atomic Force Microscope
,”
Nanotechnology, Volume 3: Information Technology
,
Wiley
,
Weinheim
.
11.
Schaefer
,
D. M.
,
Reifenberger
,
R.
,
Patil
,
A.
, and
Andres
,
R. P.
, 1995, “
Fabrication of Two-Dimensional Arrays of Nanometer-Size Clusters With the Atomic Force Microscope
,”
Appl. Phys. Lett.
0003-6951,
66
, pp.
1012
1014
.
12.
Sheehan
,
P. E.
, and
Lieber
,
C. M.
, 1996, “
Nanotribology and Nanofabrication of MoO3 Structures by Atomic Force Microscopy
,”
Science
0036-8075,
272
(
5265
), pp.
1158
1161
.
13.
Guthold
,
M.
,
Falvo
,
M. R.
,
Matthews
,
W. G.
, and
Paulson
,
S.
, 2000, “
Controlled Manipulation of Molecular Samples With the Nanomanipulator
,”
IEEE/ASME Trans. Mechatron.
1083-4435,
5
(
2
), pp.
189
198
.
14.
Hashimoto
,
H.
, and
Sitti
,
M.
, 2000, “
Controlled Pushing of Nanoparticles: Modeling and Experiments
,”
IEEE/ASME Trans. Mechatron.
1083-4435,
5
(
2
), pp.
199
211
.
15.
Li
,
G.
,
Xi
,
N.
,
Yu
,
M.
,
Fung
,
W. K.
, and
Francisco
,
S.
, 2003, “
Augmented Reality System for Real-Time Nanomanipulation
,”
Proceedings of the IEEE International Conference on Nanotechnology
, Vol.
1
, pp.
64
67
.
16.
Hansen
,
L. T.
,
Kühle
,
A.
,
Sørensen
,
A. H.
,
Bohr
,
J.
, and
Lindelof
,
P. E.
, 1998, “
A Technique for Positioning Nanoparticles Using an Atomic Force Microscope
,”
Nanotechnology
0957-4484,
9
, pp.
337
342
.
17.
Requicha
,
A. A. G.
,
Baur
,
C.
, and
Bugacov
,
A.
, 1998, “
Nanorobotic Assembly of Two-Dimensional Structures
,”
IEEE International Conference on Robotics and Automation
, Vol.
4
, pp.
3368
3374
.
18.
Requicha
,
A. A. G.
, 1999, “
Nanoparticle Patterns
,”
J. Nanopart. Res.
1388-0764,
1
, pp.
321
323
.
19.
Requicha
,
A. A. G.
,
Meltzer
,
S.
, and
Arce
,
P. F. T.
, 2001, “
Manipulation of Nanoscale Components With the AFM: Principles and Applications
,”
Proceedings of the First IEEE International Conference on Nanotechnology
, Vol.
4
, pp.
81
86
.
20.
Yang
,
Y.
,
Dong
,
Z.
, and
Qu
,
Y.
, 2008, “
A Programmable AFM-Based Nanomanipulation Method Using Vibration-Mode Operation
,”
Proceedings of the Third IEEE International Conference on Nano/Micro Engineered and Molecular Systems
, pp.
81
86
.
21.
Decossas
,
S.
,
Mazen
,
F.
,
Baron
,
T.
,
Brmond
,
G.
, and
Souifi
,
A.
, 2003, “
Atomic Force Microscopy Nanomanipulation of Silicon Nanocrystals for Nanodevice Fabrication
,”
Nanotechnology
0957-4484,
14
, pp.
1272
1278
.
22.
Ladjal
,
H.
, and
Ferreira
,
A.
, 2008, “
Semi-Automated Control of AFM-Based Micromanipulation Using Potential Fields
,”
Proceedings of the 17th World Congress International Federation of Automatic Control
, pp.
13731
13736
.
23.
Li
,
G.
,
Xi
,
N.
,
Yu
,
M.
, and
Fung
,
W. K.
, 2004, “
Development of Augmented Reality System for AFM-Based Nanomanipulation
,”
IEEE/ASME Trans. Mechatron.
1083-4435,
9
, pp.
358
365
.
24.
Sitti
,
M.
, and
Hashinoto
,
H.
, 1998. “
Tele-Nanorobotics Using Atomic Force Microscopy
,”
Proceedings of IEEE/RSJ International Conference on Intelligent Robots and System
, pp.
1729
1746
.
25.
Chen
,
H.
,
Xi
,
N.
, and
Li
,
G.
, 2006. “
CAD-Guided Automated Nanoassembly Using Atomic Force Microscopy-Based Nanorobotics
,”
IEEE. Trans. Autom. Sci. Eng.
1545-5955,
3
, pp.
208
217
.
26.
Makaliwe
,
J. H.
, and
Requicha
,
A. A. G.
, 2001, “
Automatic Planning of Nanoparticle Assembly Tasks
,”
Proceedings of the IEEE International Symposium on Assembly and Task Planning
, pp.
288
293
.
27.
Mokaberi
,
B.
, and
Requicha
,
A. A. G.
, 2004, “
Towards Automatic Nanomanipulation: Drift Compensation in Scanning Probe Microscopy
,” University of Southern California Progress Report No. 1.
You do not currently have access to this content.