An electric current, applied during deformation, has been shown to reduce the deformation force/energy, while also increasing the maximum achievable strain and decreasing springback. Considering this, the present work initiates the development of a finite element model to investigate electricity’s thermal/structural effects on a tensile specimen. The model allows the effect of joule-heating to be separated from other nonthermal property changes caused by the electricity. Comparison with experimental tensile testing with respect to the predicted stress-strain behavior and transient temperature profiles demonstrates the model predicts these behaviors adequately. A multifield large deformation finite element model is then developed. The model evaluates the stress-strain characteristics of the material while the specimen is carrying a large dc current and is being deformed, incorporating the effect of thermal softening. The simulation results are compared with surface infrared temperature measurements in order to verify the finite element model and then to actual deformation results in order to attain more qualitative and quantitative insight into the effects of the electric field.

1.
Machlin
,
E. S.
, 1959, “
Applied Voltage and the Plastic Properties of “Brittle” Rock Salt
,”
J. Appl. Phys.
0021-8979,
30
(
7
), pp.
1109
1110
.
2.
Nabarro
,
F. R. N.
, 1967,
Theory of Crystal Dislocations
,
Clarendon Press
,
Oxford
.
3.
Troitskii
,
O. A.
, 1969, “
Electromechanical Effect in Metals
,”
Zh. Eksp. Teor. Fiz. Pis'ma Red.
,
10
, pp.
18
22
.
4.
Klimov
,
K. M.
, and
Novikov
,
I. I.
, 1982, “
The “Electroplastic Effect”
,”
Problemy Prochnosti
,
2
, pp.
98
103
.
5.
Xu
,
Z. S.
,
Lai
,
Z. H.
, and
Chen
,
Y. X.
, 1988, “
Effect of Electric Current on the Recrystallization Behavior of Cold Worked Alpha-Ti
,”
Scr. Metall.
0036-9748,
22
, pp.
187
190
.
6.
Chen
,
S. W.
,
Chen
,
C. M.
, and
Liu
,
W. C.
, 1998, “
Electric Current Effects Upon the Sn/Cu and Sn/Ni Interfacial Reactions
,”
J. Electron. Mater.
0361-5235,
27
, pp.
1193
1199
.
7.
Chen
,
S. W.
, and
Chen
,
C. M.
, 1999, “
Electric Current Effects on Sn/Ag Interfacial Reactions
,”
J. Electron. Mater.
0361-5235,
28
, pp.
902
906
.
8.
Andrawes
,
J. S.
,
Kronenberger
,
T. J.
,
Roth
,
J. T.
, and
Warley
,
R. L.
, 2007, “
Effects of DC Current on the Mechanical Behavior of AlMg1SiCu
,”
Mater. Manuf. Processes
1042-6914,
22
(
1
), pp.
91
101
.
9.
Heigel
,
J. C.
,
Andrawes
,
J. S.
,
Roth
,
J. T.
,
Hoque
,
M. E.
, and
Ford
,
R. M.
, 2005, “
Viability of Electrically Treating 6061 T6511 Aluminum for Use in Manufacturing Processes
,”
Trans. North Am. Manuf. Res. Inst. SME
1047-3025,
33
, pp.
145
152
.
10.
Ross
,
C. D.
,
Irvin
,
D. B.
, and
Roth
,
J. T.
, 2007, “
Manufacturing Aspects Relating to the Effects of DC Current on the Tensile Properties of Metals
,”
ASME J. Eng. Mater. Technol.
0094-4289,
129
(
2
), pp.
342
347
.
11.
Perkins
,
T. A.
,
Kronenberger
,
T. J.
, and
Roth
,
J. T.
, 2007, “
Metallic Forging Using Electrical Flow as an Alternative to Warm/Hot Working
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
129
(
1
), pp.
84
94
.
12.
Warley
,
R. W.
,
Khalilollahi
,
A.
, and
Roth
,
J. T.
, 2006, “
Use of Coupled Field FE Modeling in Study of Resistive Heating in a 6061-T6511 Aluminum Specimen
,”
Proceedings of the 2006 ANSYS Conference and Exhibition
.
13.
Zielinski
,
A. E.
, 2003, “
Thermophysical Evaluation of a Novel Aluminum Alloy With Application to an Integrated Launch Package
,”
IEEE Trans. Magn.
0018-9464,
39
(
1
), pp.
332
336
.
14.
Rice
,
R. C.
,
Jackson
,
L. J.
,
Bakuckas
,
J.
, and
Thompson
,
S.
, 2003, U.S. Department of Transportation Report No. DOT/FAA/AR-MMPDS-01.
15.
Ross
,
C. D.
,
Kronenberger
,
T. J.
, and
Roth
,
J. T.
, 2009, “
Effect of DC on the Formability of Ti-6AL-4V Titanium
,”
ASME J. Eng. Mater. Technol.
0094-4289,
131
, p.
031004
.
You do not currently have access to this content.