The machinability of carbon nanotube (CNT)-reinforced polymer composites is studied as a function of CNT loading, in light of the trends seen in their material properties. To this end, the thermomechanical properties of the CNT composites with different loadings of CNTs are characterized. Micro-endmilling experiments are also conducted on all the materials under investigation. Chip morphology, burr width, surface roughness, and cutting forces are used as the machinability measures to compare the composites. For composites with lower loadings of CNTs (1.75% by weight), the visco-elastic/plastic deformation of the polymer-phase plays a significant role during machining, whereas, at loadings 5% by weight, the CNT distribution and interface effects dictate the machining response of the composite. The ductile-to-brittle transition that occurs with an increase in CNT loading results in reduced minimum chip thickness values and burr dimensions in the CNT composite. The increase in thermal conductivity with the increase in CNT loading results in reduced number of adiabatic shear bands being observed on the chips and reduced thermal softening effects at high cutting velocities. Thus, overall, an increase in CNT loading appears to improve the machinability of the composite.

1.
Du
,
F.
,
Fischer
,
J. E.
, and
Winey
,
K. I.
, 2003, “
Coagulation Method for Preparing Single-Walled Carbon Nanotube/Poly (Methyl Methacrylate) Composites and Their Modulus, Electrical Conductivity, and Thermal Stability
,”
J. Polym. Sci., Part B: Polym. Phys.
0887-6266,
41
(
24
), pp.
3333
3338
.
2.
Stewart
,
R.
, 2004, “
Nanocomposites: Microscopic Reinforcements Boost Polymer Performance
,”
Plast. Eng. (Brookfield, Conn.)
0091-9578,
60
(
5
), pp.
22
29
.
3.
Kymakis
,
E.
,
Alexandou
,
I.
, and
Amaratunga
,
G. A.
, 2001, “
Single-Walled Carbon Nanotube-Polymer Composites: Electrical, Optical and Structural Investigation
,”
Synth. Met.
0379-6779,
127
(
1–3
), pp.
59
62
.
4.
Samuel
,
J.
,
DeVor
,
R. E.
,
Kapoor
,
S. G.
, and
Hsia
,
J.
, 2006, “
Experimental Investigation of the Machinability of Polycarbonate Reinforced With Multiwalled Carbon Nanotubes
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
128
, pp.
465
473
.
5.
Ghai
,
I.
,
Samuel
,
J.
,
DeVor
,
R. E.
, and
Kapoor
,
S. G.
, 2007, “
Effect of Carbon Nanotube Loading on the Machinability of Polycarbonate Nanocomposites
,”
Proceedings of the International and INCOMM-6 Conference, Future Trends in Composite Materials and Processing
, Dec. 12–14.
6.
Higgins
,
B. A.
, and
Brittain
,
W. J.
, 2005, “
Polycarbonate Carbon Nanofiber Composites
,”
Eur. Polym. J.
0014-3057,
41
(
5
), pp.
889
893
.
7.
Dikshit
,
A.
,
Samuel
,
J.
,
DeVor
,
R. E.
, and
Kapoor
,
S. G.
, 2008, “
A Microstructure-Level Material Model for Simulating the Machining of Carbon Nanotube Reinforced Polymer Composites
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
130
(
3
), p.
031110
.
8.
Pötschke
,
P.
,
Bhattacharyya
,
A. R.
,
Janke
,
A.
, and
Goering
,
H.
, 2003, “
Melt Mixing of Polycarbonate/Multi-Wall Carbon Nanotube Composites
,”
Compos. Interfaces
0927-6440,
10
(
4–5
), pp.
389
404
.
9.
Bershtein
,
V. A.
,
Egorova
,
L. M.
,
Yakushev
,
P. N.
,
Pissis
,
P.
,
Sysel
,
P.
, and
Brozova
,
L.
, 2002, “
Molecular Dynamics in Nanostructured Polyimide-Silica Hybrid Materials and Their Thermal Stability
,”
J. Polym. Sci., Part B: Polym. Phys.
0887-6266,
40
(
10
), pp.
1056
1069
.
10.
Barrau
,
S.
,
Demont
,
P.
,
Maraval
,
C.
,
Bernes
,
A.
, and
Lacabanne
,
C.
, 2005, “
Glass Transition Temperature Depression at the Percolation Threshold in Carbon Nanotube-Epoxy Resin and Polypyrrole-Epoxy Resin Composites
,”
Macromol. Rapid Commun.
1022-1336,
26
(
5
), pp.
390
394
.
11.
Wong
,
M.
,
Paramsothyb
,
M.
,
Xud
,
X. J.
,
Renc
,
Y.
,
Lib
,
S.
, and
Liao
,
K.
, 2003, “
Physical Interactions at Carbon Nanotube-Polymer Interface
,”
Polymer
0032-3861,
44
(
25
), pp.
7757
7764
.
12.
Jackson
,
M. J.
, 2007,
Micro and Nanomanufacturing
,
Springer
,
New York
, pp.
191
254
.
13.
Hsia
,
K. J.
, and
Argon
,
A. S.
, 1994, “
Experimental Study of Micromechanisms of Brittle-to-Ductile Transition in Si Single Crystals
,”
Mater. Sci. Eng., A
0921-5093,
176
, pp.
111
119
.
14.
Hsia
,
K. J.
,
Gao
,
H.
, and
Xin
,
Y. -T.
,2001 “
On the Spacing Between Dislocation Nucleation Sources at Crack Tips
,”
Mater. Sci. Eng., A
0921-5093,
317
(
1–2
), pp.
257
263
.
15.
Satapathy
,
B. K.
,
Weidisch
,
R.
,
Petra
,
P.
, and
Andreas
,
J.
, 2007, “
Tough-to-Brittle Transition in Multiwalled Carbon Nanotube (MWNT)/Polycarbonate Nanocomposites
,”
Compos. Sci. Technol.
0266-3538,
67
(
5
), pp.
867
879
.
16.
Satapathy
,
B. K.
,
Gan
,
M.
,
Weidisch
,
R.
,
Pötschke
,
P.
,
Jehnichen
,
D.
,
Keller
,
T.
, and
Jandt
,
K. D.
, 2007, “
Ductile-to-Semiductile Transition in PP-MWNT Nanocomposites
,”
Macromol. Rapid Commun.
1022-1336,
28
, pp.
834
841
.
17.
Oliver
,
A.
,
Bult
,
J.
,
Le
,
Q. V.
,
Mbaruku
,
A. L.
, and
Schwartz
,
J.
, 2008, “
Mechanical Properties of Non-Functionalized Multiwall Nanotube Reinforced Polycarbonate at 77 K
,”
Nanotechnology
0957-4484,
19
,
505702
.
18.
Weule
,
H.
,
Huntrup
,
V.
, and
Tritschle
,
H.
, 2001, “
Micro-Cutting of Steel to Meet New Requirements in Miniaturization
,”
CIRP Ann.
0007-8506,
50
, pp.
61
64
.
19.
Kobayashi
,
A.
, 1967,
Machining of Plastics
,
McGraw-Hill
,
New York
, pp.
1
–35, 94–
106
.
20.
Liu
,
X.
,
DeVor
,
R. E.
, and
Kapoor
,
S. G.
, 2006, “
An Analytical Model for the Prediction of Minimum Chip Thickness in Micromachining
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
128
(
2
), pp.
474
481
.
21.
Felder
,
E.
, and
Bucaille
,
J.
, 2006, “
Mechanical Analysis of the Scratching of Metals and Polymers With Conical Indenters at Moderate and Large Strains
,”
Tribol. Int.
0301-679X,
39
(
2
), pp.
70
87
.
22.
Dikshit
,
A.
,
Samuel
,
J.
,
DeVor
,
R. E.
, and
Kapoor
,
S. G.
, 2008, “
Microstructure-Level Machining Simulation of Carbon Nanotube Reinforced Polymer Composites–Part 1: Model Development and Validation
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
130
(
3
), p.
031114
.
23.
Dikshit
,
A.
,
Samuel
,
J.
,
DeVor
,
R. E.
, and
DeVor
,
R. E.
, 2008, “
Microstructure-Level Machining Simulation of Carbon Nanotube Reinforced Polymer Composites–Part 2: Model Interpretation and Application
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
130
(
3
), p.
031115
.
24.
Shih
,
J. A.
,
Luo
,
J.
,
Lewis
,
M. A.
, and
Strenkowski
,
J. S.
, 2004, “
Chip Morphology and Forces in End Milling of Elastomers
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
126
(
1
), pp.
124
130
.
25.
Xiao
,
K. Q.
, and
Zhang
,
L. C.
, 2002, “
The Role of Viscous Deformation in the Machining of Polymers
,”
Int. J. Mech. Sci.
0020-7403,
44
(
11
), pp.
2317
2336
.
26.
Childs
,
T. H. C.
, and
Rowe
,
G. W.
, 1973, “
Physics in Metal Cutting
,”
Rep. Prog. Phys.
0034-4885,
36
, pp.
223
288
.
27.
Enomoto
,
K.
,
Yasuhara
,
T.
,
Kitakata
,
S.
,
Murakami
,
H.
, and
Ohtake
,
N.
, 2004, “
Frictional Properties of Carbon Nanofiber Reinforced Polymer Matrix Composites
,”
New Diamond Front. Carbon Technol.
1344-9931,
14
, pp.
11
20
.
28.
Lee
,
K.
, and
Dornfeld
,
D. A.
, 2005, “
Micro-Burr Formation and Minimization Through Process Control
,”
Precis. Eng.
0141-6359,
29
(
2
), pp.
246
252
.
29.
Vaidya
,
R. U.
, and
Chawla
,
K. K.
, 1994, “
Effect of Strain Rate on the Fracture of Ceramic Fibre Reinforced Glass Matrix Composites
,”
J. Mater. Sci.
0022-2461,
29
(
13
), pp.
1573
4803
.
You do not currently have access to this content.